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Introduction

This document is a detailed specification of the design and security arguments of the

digital signature scheme MQDSS. It is divided in two main parts:

• Part I Backbone results - contains:

– an analysis of the hardness of the underlying hard problem with respect to both

classical and quantum algorithms - Chapter 2,

– a description of the underlying Identification scheme - Chapter 3,

– a description and proof of security of the underlying construction - Chapter 5.

• Part II MQDSS Specifications - contains:

– a detailed description of MQDSS - Chapter 7 and Chapter 9,

– proposed and additional parameter sets - Chapter 8,

– security analysis of MQDSS- Chapter 10,

– justification of the design choices - Chapter 11,

– a detailed performance analysis of the reference implementation using the proposed

parameter sets - Chapter 12.

– a discussion on the security vs performance tradeoffs - Chapter 13,

– a summary of the strengths and weaknesses - Chapter 14, and

– a short description of an additional AVX2 implementation - Chapter 15.
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1

Preliminaries

1.1 Notations and Conventions

Let A(·, ·, . . . ) be a randomized algorithm. We write y ← A(x1, x2, . . . ) for the output of

the algorithm on input x1, x2, . . . . The same notation is used for the output of a function.

If S is a set, then s←R S denotes that s is drawn uniformly at random from S.

Furthermore, let Fq denote the finite field of order q. We use boldface letters u to denote

vectors over a finite field, i.e. u ∈ Fnq , for some positive integer n ∈ N. We call a function

Fnq → Fmq a vectorial function.

1.2 Security Notions and Definitions

In the following we provide basic security related definitions used throughout these speci-

fications.

A function µ is called negligible (in k) if for every positive polynomial p, and sufficiently

large k it holds that µ(k) < 1/p(k). For better readability we sometimes denote negligible

functions by negl(k).

We say that two distribution ensembles {Xk}k∈N and {Yk}k∈N indexed by a security

parameter k are computationally indistinguishable if for any non-uniform probabilistic

polynomial time algorithm A

|Pr [1← A (Xk)]− Pr [1← A (Yk)]| = negl(k) .

1.2.1 Digital Signatures

This specification describes a construction of digital-signature schemes. These are defined

as follows.

Definition 1.1 (Digital signature scheme). A digital-signature scheme with secu-

rity parameter k, denoted Dss(1k) is a triplet of polynomial-time algorithms Dss =

(KGen, Sign,Vf) defined as follows:

• The key-generation algorithm KGen is a probabilistic algorithm that outputs a key pair

(sk, pk).

• The signing algorithm Sign is a possibly probabilistic algorithm that on input a secret

key sk and a message M outputs a signature σ.



• The verification algorithm Vf is a deterministic algorithm that on input a public key

pk, a message M and a signature σ outputs a bit b, where b = 1 indicates that the

signature is accepted and b = 0 indicates a reject.

We write Dss instead of Dss(1k), whenever the security parameter k is clear from context

or irrelevant. For correctness of a Dss, we require that for all (sk, pk) ← KGen(), all mes-

sages M and all signatures σ ← Sign(sk,M), we get Vf(pk,M, σ) = 1, i.e., that correctly

generated signatures are accepted.

Existential Unforgeability under Adaptive Chosen Message Attacks.

The standard security notion for digital signature schemes is existential unforgeability

under adaptive chosen message attacks (EU-CMA) [34], defined as follows.

Experiment Expeu-cma
Dss(1k)(A)

(sk, pk)← KGen()

(M?, σ?)← ASign(sk,·)(pk)

Let {(Mi)}Qs1 be the queries to Sign(sk, ·).
Return 1 iff Vf(pk,M?, σ?) = 1 and M? 6∈ {Mi}Qs1 .

For the success probability of an adversary A in the above experiment we write

Succeu-cma
Dss(1k) (A) = Pr

[
Expeu-cma

Dss(1k)(A) = 1
]
.

A signature scheme is called EU-CMA-secure if any PPT algorithm A has only negligible

success probability in the Expeu-cma
Dss(1k)(A) experiment. More formally, we have the following

definition.

Definition 1.2 (EU-CMA security). Let k ∈ N and Dss a digital signature scheme with

security parameter k. We call Dss existentially unforgeable under chosen message attacks

or EU-CMA-secure if for all Qs, t = poly(k) the success probability of any PPT algorithm A
(the adversary) running in time ≤ t, making at most Qs queries to Sign in the Expeu-cma

Dss(1k)(A)

experiment, is negligible in k:

Succeu-cma
Dss(1k) (A) = negl(k) .

In the security proof of our signature scheme, we will also make use of the weaker

notion of security against key-only attacks (KOA). The difference from EU-CMA security

is that the adversary is given no access to the signing oracle, i.e., Qs = 0. More formally,

we define the following experiment.

Experiment ExpkoaDss(1k)(A)

(sk, pk)← KGen()

(M?, σ?)← A(pk)

Return 1 iff Vf(pk,M?, σ?) = 1.

Definition 1.3 (KOA security). Let k ∈ N and Dss a digital signature scheme with

security parameter k. We call Dss secure under key only attacks or KOA-secure if for all

t = poly(k) the success probability of any PPT adversary A running in time ≤ t in the

ExpkoaDss(1k)(A) experiment, is negligible in k:

SucckoaDss(1k) (A) = negl(k) ,

where SucckoaDss(1k) (A) = Pr
[
ExpkoaDss(1k)(A) = 1

]
.
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1.2.2 Identification Schemes

An identification scheme (IDS) is a protocol that allows a prover P to prove its identity

to a verifier V. More formally:

Definition 1.4 (Identification scheme). An identification scheme with security param-

eter k, denoted IDS(1k), is a triplet of PPT algorithms IDS = (KGen,P,V) such that:

• the key generation algorithm KGen outputs a key pair (sk, pk).

• P and V are interactive algorithms, executing a common protocol. The prover P takes

as input a secret key sk and the verifier V takes as input a public key pk. At the

conclusion of the protocol, V outputs a bit b with b = 1 indicating “accept” and b = 0

indicating “reject”.

We write IDS instead of IDS(1k), if the security parameter k is clear from context or

irrelevant. For correctness of an IDS, we require that for all (pk, sk)← KGen() we have

Pr [〈P(sk),V(pk)〉 = 1] = 1,

where 〈P(sk),V(pk)〉 refers to the common execution of the protocol between P with input

sk and V on input pk. In this case we say that the IDS is perfectly correct.

For the following definitions we need the notion of a transcript. A transcript of an

execution of an identification scheme IDS refers to all the messages exchanged between P
and V and is denoted by trans(〈P(sk),V(pk)〉).

We will focus on canonical 2n+ 1-pass IDS, where the prover and the verifier exchange

2n+ 1 messages, n challenges and n replies. These IDS are defined as follows.

Definition 1.5 (Canonical 2n + 1-pass identification schemes). Consider IDS =

(KGen,P,V), a 2n + 1-pass identification scheme with n challenge spaces C1, . . . , Cn.

We call IDS a canonical 2n + 1-pass identification scheme if the prover can be split

into n + 1 subroutines P = (P0,P1, . . . ,Pn) and the verifier into n + 1 subroutines

V = (ChS1, . . . ,ChSn,Vf) such that:

• P0(sk) computes the initial commitment com sent as the first message and a state state

fed forward to P1.

• ChS1, computes the first challenge message ch1 ←R C1, sampling at random from the

challenge space C1.

• P1(state, ch1), computes the first response resp1 of the prover (and updates the state

state) given access to the state and the first challenge.

• For every i ∈ {2, . . . , n}
– ChSi, computes the i-th challenge message chi ←R Ci.

– Pi(state, chi), computes the i-th response respi of the prover given access to the state

and the i-th challenge.

• Vf(pk, com, ch1, resp1, . . . , chn, respn), upon access to the public key and the whole tran-

script outputs V’s final decision.

Note that the state forwarded among the prover algorithms can contain all inputs to

previous prover algorithms if they are needed later. We also assume that the verifier keeps

all sent and received messages to feed them to Vf.

Our construction uses the special case of canonical 5-pass IDS (where n = 2). On the

other hand, standard choice in the literature for building signatures is the special case
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n = 1. For comparison, we will use both in these specifications, and for completeness

and clarity we provide figures of both. Figure 1.1 describes a canonical 3-pass IDS, and

Figure 1.2 a canonical 5-pass IDS.

P V

(state, com)← P0(sk) com

ch1 ←R ChS1(1
k)ch1

resp1 ← P1(state, ch1) resp1

b← Vf(pk, com, ch1, resp1)

Fig. 1.1: Canonical 3-pass IDS

P V

(state, com)← P0(sk) com

ch1 ←R ChS1(1
k)ch1

(state, resp1)← P1(state, ch1) resp1

ch2 ←R ChS2(1
k)ch2

resp2 ← P2(state, ch2) resp2

b← Vf(pk, com, ch1, resp1, ch2, resp2)

Fig. 1.2: Canonical 5-pass IDS

Furthermore, we will consider a particular type of canonical 5-pass IDS where the size

of the two challenge spaces is restricted to q and 2.

Definition 1.6 (q2 -Identification scheme). A q2 -Identification scheme IDS is a canon-

ical 5-pass identification scheme where for the challenge spaces C1 and C2 it holds that

|C1| = q and |C2| = 2.

Security against Impersonation under Passive Attack.

The standard security notion for identification schemes is security against impersonation.

Here, the goal of the adversary - the impersonator I, is to impersonate the prover in an

interaction with an honest verifier without the knowledge of the secret key. When talking

about passive attacks, the impersonator, besides the public key, might have access to pol-

lynomially many valid interactions between the prover and the verifier (via eavesdropping

for example), i.e., access to a transcript oracle Trans(pk, sk, ·) that outputs valid transcripts

of honest executions.

For a canonical 2n+ 1-pass IDS we consider the following experiment:

Experiment Expimp-pa
IDS(1k)

(I)

(sk, pk)← KGen()

(state, com)← ITrans(pk,sk,·)(pk)

For every i ∈ {1, . . . , n}
chi ←R ChSi(1

k)

(state, respi)← ITrans(pk,sk,·)(pk)

Return 1 iff Vf(pk, com, ch1, resp1, . . . , chn, respn) = 1.
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For the success probability of the impersonator I in the above experiment we write

Succimp-pa
IDS(1k)

(I) = Pr
[
Expimp-pa

IDS(1k)
(I) = 1

]
.

Definition 1.7 (IMP-PA security). Let k ∈ N and IDS a canonical 2n+ 1 identification

scheme with security parameter k. We say IDS is secure against impersonation under

passive attacks or IMP-PA-secure if for all Qt, t = poly(k) the success probability of any

PPT impersonator I running in time ≤ t, making at most Qt queries to Trans in the

Expimp-pa
IDS(1k)

(I) experiment, is negligible in k:

Succimp-pa
IDS(1k)

(I) = negl(k) .

Security Properties of Identification Schemes.

The properties of identification schemes interesting in our context are those that provide

passive security. We next give the necessary definitions.

First of all, it must be hard for any cryptographic scheme to derive a valid secret key

given a public key. To formally capture this intuition, we need to define what valid means.

For this we define the notion of a key relation.

Definition 1.8 (Key relation). Let IDS be an identification scheme and R some relation.

We say IDS has key relation R if

∀(pk, sk)← KGen() : (pk, sk) ∈ R

Now that we have defined what valid means, we can define key-one-wayness.

Definition 1.9 (Key-One-Wayness). Let k ∈ N be the security parameter, IDS(1k)

be an identification scheme with key relation R. We call IDS key-one-way (KOW) (with

respect to key relation R) if for all polynomial time algorithms A,

Succpq−kow
IDS(1k)

(A) = Pr
[
(pk, sk)← KGen(), sk′ ← A(pk) : (pk, sk′) ∈ R

]
= negl(k)

Definition 1.10 (Soundness (with soundness error κ)). Let k ∈ N, IDS(1k) =

(KGen,P,V) an identification scheme with security parameter k. We say that IDS is sound,

with soundness error κ, if for every PPT algorithm A (the adversary),

Pr

[
(pk, sk)← KGen()〈
A(1k, pk),V(pk)

〉
= 1

]
≤ κ+ negl(k) .

Definition 1.11 ((computational) Honest-verifier zero-knowledge). Let k ∈ N,

IDS(1k) = (KGen, P,V) an identification scheme with security parameter k. We say that

IDS is computational honest-verifier zero-knowledge (HVZK) if there exists a probabilis-

tic polynomial time algorithm S, called the simulator, such that for any polynomial time

algorithm A and (pk, sk)← KGen():

Succpq−hvzk
IDS(1k)

(A) =

|Pr [1← A (sk, pk, trans(〈P(sk),V(pk)〉))]− Pr [1← A (sk, pk,S(pk))]| = negl(k) .
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Definition 1.12 (Special soundness). Let IDS(1k) be a 3-pass Identification scheme

with key relation R and A a polynomial time algorithm that upon input of security param-

eter 1k and an IDS(1k) public key pk outputs, with non-negligible probability, four valid

transcripts with respect to pk:

trans = (com, ch1, resp1),

trans′ = (com, ch′1, resp
′
1),

(1.1)

where ch1 6= ch′1.

We say that IDS(1k) is special sound if there exists a polynomial time algorithm KIDS,

the extractor, that, given a public key pk and access to A, outputs a secret key sk such that

(pk, sk) ∈ R with non-negligible success probability in k.

To prove security of our signature scheme, we will make use of the existence of so called

q2-extractor which is a variant of special soundness. This is combined with a notion of

key-one-wayness to later be able to argue about security.

Definition 1.13 (q2-Extractor). Let IDS(1k) be a q2-Identification scheme with key re-

lation R and A a polynomial time algorithm that upon input of security parameter 1k and

an IDS(1k) public key pk outputs, with non-negligible probability, four valid transcripts with

respect to pk:

trans(1)= (com, ch1, resp1, ch2, resp2), trans(3)= (com, ch′1, resp
′
1, ch2, resp2),

trans(2)= (com, ch1, resp1, ch
′
2, resp

′
2), trans(4)= (com, ch′1, resp

′
1, ch

′
2, resp

′
2).

(1.2)

where ch1 6= ch′1 and ch2 6= ch′2.

We say that IDS(1k) has a q2-Extractor if there exists a polynomial time algorithm

KIDS, the extractor, that, given a public key pk and access to A, outputs a secret key sk

such that (pk, sk) ∈ R with non-negligible success probability in k.

Security Properties of Commitments.

The security of identification schemes relies on the properties of the underlying commit-

ment scheme. The goal of “commiting” to a certain value is twofold: It should not be

feasible for anyone to discover this value before the prover opens the commitment, but

also, it should not be feasible for the prover to open the commitment in multiple ways.

These two properties are known as hiding and binding. They come in different flavors -

perfect, statistical and computational, depending on what “feasible” means.

For our purposes, the weakest version of computational hiding and binding will suffice.

These are formally defined as follows.

Definition 1.14 (Computationally hiding commitments). Let k ∈ N, Com(1k) a

commitment scheme with security parameter k. We say that Com is computationally hiding

if for any two messages M,M ′ and random string ρ, for any polynomial time algorithm

A: ∣∣Pr [1← A (Com(ρ,M))]− Pr
[
1← A

(
Com(ρ,M ′)

)]∣∣ = negl(k) .

Definition 1.15 (Computationally binding commitments). Let k ∈ N, Com(1k)

a commitment scheme with security parameter k. We say that Com is computationally

binding if for any polynomial time algorithm A

Pr
[
Com(ρ,M) = Com(ρ′,M ′) ∧M 6= M ′ : (ρ,M, ρ′,M ′)← A(1k)

]
= negl(k) .
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2

The MQ Problem

2.1 Multivariate Quadratic (MQ) Functions and the MQ Problem

Let m,n, q ∈ N, x = (x1, . . . , xn) and let MQ(n,m,Fq) denote the family of vectorial

functions F : Fnq → Fmq of degree 2 over Fq:

MQ(n,m,Fq) = {F(x) = (f1(x), . . . , fm(x))|

fs(x) =
∑
i,j

a
(s)
i,j xixj +

∑
i

b
(s)
i xi, s ∈ {1, . . . ,m}}.

We will refer to F ∈ MQ(n,m,Fq) as multivariate quadratic (MQ) function. Given

v ∈ Fmq we will refer to F(x) = v as system of m quadratic equations in n variables.

We will omit m,n, q whenever they are clear from the context.

Definition 2.1. Let F ∈MQ(n,m,Fq). The function G(x,y) = F(x + y)−F(x)−F(y)

is called the polar form of the function F.

It is not hard to verify that the polar form is bilinear, i.e., for every a1,a2,b ∈ Fnq it holds

G(a1 + a2,b) = G(a1,b) + G(a2,b) and

G(b,a1 + a2) = G(b,a1) + G(b,a2).

Definition 2.2 (MQ relation). The MQ relation is the binary relation defined as:

RMQ(m,n,q) ⊆ (MQ(n,m,Fq)× Fmq )× Fnq : ((F,v), s) ∈ RMQ(m,n,q) iff F(s) = v.

We relate the following problem to the family MQ(n,m,Fq) of MQ functions:

Definition 2.3 (MQ problem (search version)). Let m,n, q ∈ N. An instance

MQ(F,v) of the MQ (search) problem is defined as:

Given F ∈MQ(n,m,Fq),v ∈ Fmq find, if any, s ∈ Fnq such that

((F,v), s) ∈ RMQ(m,n,q).

The decisional version of the MQ problem is known to be NP -complete [32]1. It is

widely believed that the MQ problem is intractable even for quantum computers in the

average case. We formalize the intractability of the MQ problem through the following.

1 Note that theMQ problem is a special case of the more general problem of solving a system of equations

over a finite field of degree deg ≥ 2, known as PoSSo. The decisional version of the PoSSo problem is

NP -complete [32].



Assumption 2.4 (MQ assumption) Let m,n, q ∈ N, F ←R MQ(n,m,Fq) and s ←R

Fnq . For every polynomial time quantum algorithm A given F and v = F(s) it is computa-

tionally hard to find a solution s′ to the MQ(F,v) problem. More formally,

Pr

((F,v), s′
)
∈ RMQ(m,n,q) :

F←RMQ(n,m,Fq)
s←R Fnq
((F,v), s) ∈ RMQ(m,n,q)
s′ ← A(1k,F,v)

 = negl(k) .

2.2 Classical Algorithms for Solving the MQ Problem

The difficulty of solving the MQ problem is strongly dependent on the ratio between the

number of variables n and number of equations m. It is known that when m > n(n+ 1)/2

(overdetermined systems) and when n > m(m + 1) (underdetermined systems) the MQ
problem is solvable in polynomial time.

The first case is simply a result of replacing all monomials by a new variable, and

solving a linear system in n(n+1)/2 variables and at least as many equations. The second

case was solved by Kipnis, Patarin and Goubin [40] and later [53] Thomae and Wolf

showed that the complexity gradually increases to exponential when m ≈ n. Indeed, the

most interesting case is when m = n: Adding more equations gives away more information

about the system; On the other hand, if there are more variables, we can simply fix the

excess of them, and end up with a system of the same number of variables and equations.

In the rest of this section we will assume that m > n, but also that m = O(n).

For this range of parameters, the state of the art algorithms employ algebraic techniques

that analyze the properties of the ideal generated by the given polynomials. The most

important are the algorithms from the F4/F5 family [26, 27, 5, 12], and the variants of

the XL algorithm [21, 24, 59, 58]. Although different in description, the two families bear

many similarities, which results in similar complexity [60]. Therefore, in our analysis we

will not consider the algorithms from the XL family.

In the Boolean case, today’s state of the art algorithms BooleanSolve [6] and FXL [58],

provide improvement over exhaustive search, with an asymptotic complexity of Θ(20.792n)

and Θ(20.875n) for m = n, respectively. Practically, the improvement is visible for poly-

nomials with more than 200 variables. A very recent algorithm, the Crossbred algorithm

[37] over F2, is likely to further improve the asymptotic complexity, as the authors report

that it passes the exhaustive search barrier already for 37 Boolean variables.

Interestingly, the current best known algorithms, BooleanSolve [6], FXL [58, 59], the

Crossbred algorithm [37] and the Hybrid approach [12] all combine algebraic techniques

with exhaustive search. This immediately allows for improvement in their quantum version

using Grover’s quantum search algorithm [36], provided the cost of implementing them

on a quantum computer does not diminish the gain from Grover. These algorithms will

be subject to our interest in the rest of the section. Their implementation on a quantum

computer and the speed up from using Grover’s algorithm will be discussed in Section 2.3.

For comparison reasons, in our analysis we will also consider exhaustive search per-

formed through fast enumeration techniques [13]. We will not consider a probabilistic

method recently proposed by Lokshtanov et al. [43]. Although it is provably faster than

exhaustive search, the improvement in the case of odd characteristic fields is not compa-

rable to the best algebraic methods. Furthermore, it has not been studied enough and has
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not been implemented (to the best of our knowledge), so even in the Boolean case where

the asymptotic complexity is O(20.8765n) it is not clear for what values of n this algorithm

outperforms exhaustive search.

In the rest of this section, let F = (f1, . . . , fm), fi ∈ Fq[x1, . . . , xn]. Without loss of

generality, the equation system that we want to solve is F(x) = 0.

2.2.1 Exhaustive search

A natural and simple way of obtaining a solution of the given system is to try out all

possible values x ∈ Fnq until the system is satisfied. A näıve implementation would require

2
(
n
2

)
additions and multiplications for a single polynomial, and m times more for the entire

system, amounting to a complexity of O(mn2qn) field operations. However, in [13], Bouil-

laguet et al. introduced a technique for fast enumeration in F2 that needs only log2(n)2n+2

Boolean operations. The technique uses Gray codes enumeration and partial derivatives

of the polynomials. Although [13] considers only the Boolean case, the technique can be

extended to larger fields by using q-ary Gray codes. So, for simplicity we will assume that

fast enumeration can be performed in logq(n)qn operations over a field of size q.

2.2.2 The HybridF5 algorithm

Currently, the standard algorithms for solving generic instances of the MQ problem are

the algorithms for computing a Gröbner basis of the ideal generated by the set of MQ
polynomials. The idea was first introduced by Buchberger [15] and later further devel-

oped by Lazard [42] who established the link between computing the Gröbner basis and

performing Gaussian elimination on the Macaulay matrices (of degree up to a sufficiently

large integer D) of the given polynomials.2 The algorithm was improved several times by

Buchberger himself in order to reduce the number of unnecessary reductions to 0 during

the Gröbner basis computation. A significant improvement was done in the variant pro-

posed by Faugère [26] known as the F4-algorithm. The main improvement comes from the

introduced strategy to reduce all critical pairs of minimal degree at once (instead of one

by one) using the Macaulay matrix and sparse matrix algebra techniques. Later, Faugère

completely removed the reductions to zero for semi-regular sequences in the improved

F5-algorithm [27, 7, 8].

The semi-regularity assumption is crucial in this algorithm (as it will be in the other

algebraic methods we consider). Informally (which is enough for our purposes), a sequence

of polynomials (f1, . . . , fm),m ≥ n is semi-regular if the only relations (dependencies)

among the polynomials are the trivial ones generated by fifj − fjfi = 0. Note that the

regularity assumption is a very plausible one for randomly generated polynomials, and

has been experimentally supported (see for example [6]). We will also assume that the

instances generated in our signature scheme are semi-regular.

The main complexity in the F5 algorithm (and also in the BooleanSolve and the

Crossbread algorithm) comes from performing Gauss elimination on the Macaulay matrix

MacD(F) of degree D (the matrix whose rows are formed by the coefficients of monomials

2 In essence, it can be considered as a generalization of Gaussian elimination for nonlinear polynomials.

One important distinction is that, unlike in Gaussian elimination, in Gröbner basis algorithms the order

in which the variables are eliminated and generally, the ordering of the monomials, is very important

(see [27, 7] for example).
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ufi of maximal degree D). The degree D should be big enough so that a Gröbner basis

of the ideal generated by the polynomials can be obtained by row-reducing the Macaulay

matrix. The smallest such D is called the degree of regularity Dreg, and for semi-regular

systems it is given by Dreg(n,m) = 1 + deg(HSq(t)), where

HSq(t) =

[
(1− t2)m

(1− t)n

]
+

, for q > 2, and HS2(t) =

[
(1 + t)n

(1 + t2)m

]
+

,

and the + subscript denotes that the series has been truncated before the first non-positive

coefficient.

Now, for the case of q > 2 the Macaulay matrix MacD(F) has
(
n+D−1

D

)
columns and

m
(
n+D−3
D−2

)
rows, so computing the row-echelon form requires Θ(m

(
n+D−3
D−2

)(
n+D−1

D

)ω−1
)

operations, where 2 6 ω 6 3 is the linear algebra constant. The computation is repeated for

every D ∈ {2, . . . , Dreg}, which amounts to a total of Θ
(
m
∑Dreg

D=2

(
n+D−3
D−2

)(
n+D−1

D

)ω−1)
field operations. In the case of q = 2, the logic is the same, except that now we use

plain combinations (instead of combinations with repetition as for q > 2), so the formula

becomes Θ
(
m
∑Dreg

D=2

(
n

D−2
)(
n
D

)ω−1)
. More compactly, the complexity of the F5 algorithm

is:
CF5(q,m, n) = O

(
mDreg

(n+Dreg(n,m)−1
Dreg(n,m)

)ω)
, for q > 2, and

CF5(2,m, n) = O
(
mDreg

(
n

Dreg(n,m)

)ω) (2.1)

field operations [8]. The value of the linear algebra constant ω depends on the algorithm

used, and it ranges from ω = 3 for näıve Gauss elimination down to ω = 2.376 for

Coppersmith-Winograd algorithm [19], and even further to ω < 2.373 due to improvements

by Vassilevska-Williams [57]. However these algorithms are extremely complex and with

a huge constant factor to be actually useful in practice. For cryptanalysis purposes, the

best we can hope for is ω = log2(7), obtained using Strassen algorithm [51].

The Hybrid approach introduced by Bettale et al.[12], tries to reduce the complex-

ity of F5 by introducing a trade-off between brute-forcing and the F5 algorithm for

smaller MQ instances. Namely, the algorithms first fixes n − k variables, so the re-

duction is now performed on MacDreg(F̃), where F̃ = (f̃1, . . . , f̃m) and f̃i(x1, . . . , xk) =

fi(x1, . . . , xk, ak+1, . . . , an), for every (ak+1, . . . , an) ∈ Fn−k2 . The value of k is chosen such

that the overall complexity is minimized. In total the complexity of the Hybrid approach

for solving systems of n equations in n variables over Fq is

CHyb(n, k) = Guess(q, n− k) · CF5(q, k, n), (2.2)

where Guess(q, n − k) = O(log(n − k)qn−k) is the cost of the exhaustive search over all

qn−k possibilities, including partially evaluating n − k variables in field operations, and

CF5(k, n) is given in (2.1).

Note that the technique of fixing variables had already been used in the XL algorithm

[21], and this version is known as FXL [58, 59].

2.2.3 The BooleanSolve algorithm

In the case of F2, the BooleanSolve algorithm [6] performs better than the Hybrid approach.

Similar to the Hybrid approach, it requires a semi-regularity assumption on the MQ
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instance. Also as in the Hybrid approach, it first fixes some optimal amount n− k of the

variables and then performs some tests on the smaller instance.

Then, the problem of finding a solution is basically reduced to testing the consistency

of a related linear system

u ·MacDreg(F̃) = (0, . . . , 0, 1) (2.3)

where MacDreg(F̃) is defined in the previous paragraph. If the system (2.3) is consistent,

then the original system does not have a solution. This allows for pruning of all the

inconsistent branches corresponding to some a ∈ Fn−k2 . A simple exhaustive search is

then performed on the remaining branches. It can be shown that the running time of

the algorithm is dominated by the first part of the algorithm (this holds true even in

the quantum version of the algorithm, although in the quantum case the difference is

not as big, as a consequence of the reduced complexity of the first part). Therefore, for

simplicity, we omit the exhaustive search on the remaining branches from our analysis.

The complexity of the BooleanSolve algorithm is given by

CBool(n, k) = Guess(2, n− k) · Ccons(MacDreg(F̃)), (2.4)

where Guess(2, k) is defined the same as in the Hybrid approach, and

Ccons(MacDreg(F̃)) = Θ(N2 log2N log logN), N =

Dreg(k,n)∑
i=0

(
k

i

)
is the complexity of testing consistency of the system (2.3), using the sparse linear algebra

algorithm from [33].

2.2.4 The Crossbread algorithm

Recently, Joux and Vitse [37] proposed a new algebraic method for solving quadratic sys-

tems over F2 called the Crossbred algorithm. Although originally only F2 was considered,

the algorithm works the same for any field, so we will assume an arbitrary field Fq. We

will also assume that the given system is semi-regular.

The main idea of this approach is to first perform some operations on the Macaulay

matrix of degree D > Dreg(k, n) of the given system, and only afterwards to fix variables.

Again, as in the previous algorithms, k is a suitably chosen optimization parameter such

that the overall complexity is minimized. Furthermore, let d 6 D be a small integer and

degku denote the degree of the monomial u in the first k variables. Let Mac
(k)
D,d(F) be the

submatrix of MacD(F) consisting of the rows indexed by ufi, where degku > d−1, and let

M
(k)
D,d(F) be the submatrix of Mac

(k)
D,d(F) consisting of the columns indexed by u, where

degku > d.

The algorithm works as follows: In the first part, we try to find enough linearly inde-

pendent elements vi (in particular for q > 2 at least
∑d

i=0

(
k+i−1
i

)
including the original m

when d > 1) in the kernel of M
(k)
D,d(F), that are not in the kernel of Mac

(k)
D,d(F). Next we

find the set of polynomials corresponding to viMac
(k)
D,d(F). These polynomials, (possibly

together with the original when d > 1) form a new system P that will be of interest in

the second part of the algorithm.
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In this part, for each (ak+1, . . . , an) ∈ Fn−kq we form the system P̃(x1, . . . , xk) =

P(x1, . . . , xk, ak+1, . . . , an). It is crucial to observe that P̃ is of degree d and the sys-

tem contains
∑d

i=0

(
k+i−1
i

)
equations when q > 2 (

∑d
i=0

(
k
i

)
when q = 2), which means

it is possible to solve it easily by linearization, i.e. by considering each monomial as new

variable, and solving the resulting linear system.

The advantage here comes from using sparse linear algebra algorithms on MacD(F) for

the first part and dense linear algebra only on the smaller matrix in the second part. Note

that, as long as the number of the remaining k variables is small, the sparse linear algebra

part takes much less time, since in this case Dreg(k, n) is also small. It turns out that

actually it is more efficient to work with a MacD, with D > Dreg(k, n), but not too large

so that the cost of the first part becomes significant. The complexity thus, is dominated

by enumeration of n−k variables in a system of n variables of degree D over Fq q > 2, and

checking whether the obtained system has a valid solution. In total, under the condition

that:

Dim(Ker(M
(k)
D,d(F)) \Ker(Mac

(k)
D,d(F))) >

d∑
i=0

(
k + i− 1

i

)
, (2.5)

the complexity of the Crossbread algorithm for q > 2 is given by3

CCross(n, k, d) = Sparse(M
(k)
D,d(F)) +Guess(q, n− k) ·

(
k + d− 1

d

)ω
, (2.6)

where Guess(q, k) is defined the same as in the Hybrid approach, and Sparse(M
(k)
D,d(F)) =

O(
(
n+D−1

D

)2
) is the complexity for finding the kernel vectors using for example the block

Lanczos algorithm [44] or the block Wiedemann algorithm [20] for sparse matrices (or

their improvements). Note that an external specialization of variables is also possible, but

we have verified that this does not bring any improvement in the number of operations.

However it is useful for parallelization of the algorithm. 4

At the end of this section, we provide the number of field operations of the described

algorithms for solving MQ instances for various fields Fq and different values of m = n

that are interesting for practical use. Table 2.1 summarizes the Boolean case, and Table 2.2

lists the values for some common choices of q > 2. Note that the cost of the algorithms is

given in field operations as is common for such algorithms. We did not use the gate count

metric from the NIST call for proposals [46], but it is not difficult to convert to number

of gates if necessary.

3 The case of q = 2 is similar except that the system is of size ≈
(
k
d

)
.

4 The preprint [37] does not contain a complexity analysis of the Crossbread algorithm, nor are all the

choices in the algorithm described. What is written here is our interpretation of the algorithm.
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CrossBread (d=1) BooleanSolve HybridF5 FastEnum

n k Field op. k Field op. k Field op. Field op.

128 28 2118 40 2135 16 2137 2133

144 30 2130 52 2150 17 2153 2149

160 30 2148 55 2164 18 2168 2165

192 31 2179 80 2191 35 2198 2197

224 32 2210 96 2219 38 2228 2229

256 33 2241 102 2246 55 2259 2261

296 34 2280 139 2280 59 2296 2301

Table 2.1: Comparison of the time complexity of the Crossbread algorithm [37], the

BooleanSolve algorithm [6], the Hybrid Approach [12] and exhaustive search through fast

enumeration [13] in terms of field operations for F2. The parameter k denotes the number

of remaining variables in the specialization process in each of the algorithms respectively.

HybridF5 CrossBread (d=1) FastEnum

q n k Field op. k Field op. Field op.

4 80 32 2160 21 2134 2164

4 96 35 2188 21 2166 2195

4 112 44 2215 22 2196 2228

4 128 53 2242 23 2226 2260

4 144 51 2269 24 2257 2292

4 160 60 2296 25 2287 2324

16 48 36 2147 18 2135 2194

16 64 41 2190 19 2196 2258

16 72 49 2210 20 2224 2290

16 96 66 2273 21 2316 2386

31 40 32 2134 17 2129 2200

31 48 39 2159 18 2164 2240

31 64 49 2205 19 2238 2319

31 88 71 2274 20 2353 2438

31 96 72 2297 21 2388 2478

32 48 39 2159 18 2165 2242

32 64 52 2206 19 2240 2322

32 88 71 2274 20 2356 2442

32 96 72 2298 21 2391 2482

64 40 32 2143 17 2153 2242

64 64 52 2217 19 2286 2386

128 40 37 2143 17 2176 2281

128 64 59 2222 19 2330 2450

256 40 37 2146 17 2199 2321

Table 2.2: Comparison of the time complexity of the the Hybrid Approach [12], the

Crossbread algorithm [37], and exhaustive search through fast enumeration [13] in terms

of field operations for common choices of the field Fq, q > 2. The parameter k denotes

the number of remaining variables in the specialization process in each of the algorithms

respectively.
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2.3 Using Grover’s Algorithm for Solving the MQ Problem

In this section we will investigate the cost of the quantum versions of the known classical

algorithms that we described in the previous Section. To the best of our knowledge, there

are no dedicated quantum algorithms for solving the MQ problem. We are only aware of

the work of Westerbaan and Schwabe [56], who investigate the cost of exhaustive search

using Grover’s algorithm against the MQ problem. In our paper [16], where we first

introduce MQDSS, we briefly analyze the gain of applying Grover on the Hybrid approach.

Here, we will use a more accurate metric, and following NIST’s recommendations [46]

we will express the cost of the algorithms in terms of number of fault-tolerant quantum

gates and quantum circuit depth.

2.3.1 Finite Field Arithmetic on Quantum Computers

Fault-Tolerant quantum gates.

In quantum computing, similarly as in classical computing, there is a need for fixed small

universal set of instructions that can be used to express any type of reversible quantum

operation. Furthermore, such universal sets need to have fault-tolerant implementations

to reduce pilling up of noise and thus errors in quantum computation. Recent work [4, 3]

has identified “Clifford+T” as the standard universal fault-tolerant gate set. It is the set

of gates generated by = {H,CNOT, T} where,

H : |x〉 7→ |0〉+ (−1)x|1〉√
2

,

CNOT : |x〉|y〉 7→ |x〉|x⊕ y〉,
T : |x〉 7→ e

iπx
4 |x〉.

We will also need the Toffoli gate:

Toffoli : |x〉|y〉|z〉 7→ |x〉|y〉|z ⊕ xy〉.

which is also a common gate in designing circuits. Many implementations of the Toffoli

gate using Clifford+T gate are known, depending on whether the goal is to minimize the

number of ancilla qubits used, the gate count or circuit depth. In our evaluation we have

chosen a balanced metric, assuming sufficient number of ancilla qubits. In other words,

we are interested in implementations that minimize at the same time the T -count and T -

depth (of T gates only) but more importantly, the overall gate count and depth including

Clifford gates. Thus we will use the implementation from Amy et al.[4] that requires 7

T -gates and 8 Clifford gates, and has T -depth 4, and overall depth 8.

In what follows, we will use the same metric to evaluate larger quantum circuits.

Cost of finite field addition and multiplication.

The algorithms we are interested in, are all performed over finite fields F(2s) or Fp for p

prime. Therefore we need an estimate for the cost of the arithmetic operations over these

fields. We use the results from [9, 18, 38]:

• Addition over F(2s) can be implemented using s parallel CNOT (Clifford) gates (so

the overall depth is 1).
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• Multiplication over F(2s) (using Karatsuba’s algorithm) can be implemented using

7slog2(3) T -gates and 10slog2(3) − 2s Clifford gates, with T -depth of 4s and overall

depth of 9s

• Addition over F(p) can be implemented using approximately 180 log2(p) Clifford gates

and 140 log2(p) T -gates with the same depth.

• Multiplication over F(p) can be implemented using approximately 2·180 log22(p) Clifford

gates and 2 · 140 log22(p) T -gates with T -depth of 2 · 140 log2(p) and overall depth of

2 · 320 log2(p).

2.3.2 Grover’s Quantum Search Algorithm

Grover’s algorithm [36] searches for an item in an unordered list of sizeN = 2k that satisfies

a certain condition given in a form of a quantum black-box function f : {0, 1}k → {0, 1}
and realized as a unitary circuit Uf : |x〉|y〉 7→ |x〉|x⊕f(y)〉 - the “oracle”. If the condition

is satisfied for an item x0, then f(x0) = 1, otherwise f(x0) = 0. The algorithm consists of

applying an optimal number of times the operatorG = Uf
(
(H⊗k(2|0〉〈0| − 12k)H⊗k)⊗ 12

)
on a state |ψ〉⊗ |φ〉 where the first register has been prepared in an equal superposition of

all |x〉, i.e., |ψ〉 = 1√
2k

∑
x∈{0,1}k |x〉, and φ = 1√

2
(|0〉 − |1〉) (see Figure 2.1). The operator

G needs to be iteratively repeated
⌊
π
4

√
N/M

⌋
times, where M is the number of items that

satisfy the condition f [14]. In this case, if M << N , the algorithm fails with negligible

probability 6 M/N . Note that, even if the number of solutions M is unknown, a slight

modification of the algorithm from [14], again guarantees that a solution will be found

with overwhelming probability after
⌊
9
4

√
N/M

⌋
Grover iterations. In the next subsection,

we will elaborate on the number of solutions of the MQ problem.

(a) (b)

Fig. 2.1: Quantum circuit that implements Grover’s algorithm for a search space of size

N = 2k. Figure from [35]. (a) The full algorithm where G is the Grover iterate that

represents one round of the algorithm. (b) One round of Grover’s algorithm (detailed view

of the operator G).

From the above, and assuming we know the number of solutions, the cost of Grover’s

algorithm can be expressed as:

Cost(Grover) =

⌊
π

4

√
2k/M

⌋
· (Cost(Uf ) + Cost(Us)) (2.7)

where Us = 2|s〉〈s| − 12k is the Grover diffusion operator. Here Cost can be any metric of

choice, such as quantum gate count or quantum circuit depth.
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In [35] it was calculated that the diffusion operator Us can be implemented as a k-fold

CNOT gate which requires 8k − 24 Toffoli gates, which easily translates to Clifford+T

gates (see previous Section).

In the next subsection we will consider several different instantiations of the function

Uf leading to a solution for the MQ problem F(x) = 0. The oracle Uf can be any of the

following:

• The MQ oracle UMQ: UMQ(a) = 1 for a ∈ Fnq if F(a) = 0 (cf. Subsection (2.2.1));

• The BooleanSolve oracle UBool: UBool(a) = 1 for a ∈ Fn−k2 if the system (2.3) is

inconsistent and the second part of the BooleanSolve algorithm on F̃ outputs b ∈ Fkq
such that F̃(b) = 0 (cf. Subsection (2.2.3));

• The Hybrid F5 oracle UHybF5: UHybF5(a) = 1 for a ∈ Fn−kq if the F5 algorithm on F̃

outputs b ∈ Fkq such that F̃(b) = 0 (cf. Subsection (2.2.2));

• The Crossbread oracle UCross: UCross(a) = 1 for a ∈ Fn−kq if the Crossbread algorithm

on P̃ outputs a solution b ∈ Fkq such that P̃(b) = 0 (cf. Subsection (2.2.4)).

2.3.3 Resource Estimates of Grover Enhanced Quantum Algorithms for

Solving the MQ Problem

On the number of solutions of the MQ problem.

As already mentioned, our proposal uses randomly generated instances F ∈MQ(n,m,Fq),
where the number of polynomials m is the same as the number of variables n. The goal

of the adversary will be to find one solution of a system F(x) = v, for a given public

value v ∈ Fn. While our key generation mechanism guarantees that this system will have

at least one solution, we don’t know the exact number of solutions which is an important

parameter in Grover’s algorithm. In the previous section we saw that it is possible to

overcome this problem by adapting Grover’s algorithm to such a setting. But, we can

actually argue that there is no need for that, and that it is safe to assume in our analysis

that the number of solutions is M = 1. Indeed, in [30], it was shown that the number of

solutions of a system of n equations in n variables follows the Poisson distribution with

parameter λ = 1 (the expected value is 1), i.e. the probability that the system has exactly

M solutions is 1
eM ! . Furthermore, the probability that there are more than M solutions

can be estimated as the tail probability of a Poisson distribution which is negligible in

M . This means that with overwhelming probability, the number of solutions is very small,

and we can simply run Grover first assuming M = 1, then M = 2 and so on, until the

algorithm succeeds. In particular, since we know that the system has at least one solution,

the probability that it is the only solution is 1
e−1 ≈ 0.58, and that there are at most 2

solutions 5
4(e−1) ≈ 0.73. Hence, the adversary has a good chance to succeed already in the

first two runs, and the probability quickly rises with each additional run. In our analysis,

we will assume that it is enough to run Grover only for M = 1 (as a lower bound of the

cost of the algorithm).

The MQ oracle.

In [56], Westerbaan and Schwabe constructed two oracles for evaluation of MQ polyno-

mials over F2 and estimated the cost of Grover’s algorithm using these oracles. Here we

will adapt their estimates for the case of any field Fq. As our metrics is mainly circuit

size and depth (and not number of qubits) we will focus on their approach for the first
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oracle. Their second oracle uses approximately half the number of quibits of their first

oracle (with a small overhead), but double the circuit size.

Following [56] we estimate that the MQ oracle UMQ over Fq requires approximately

4n2m field multiplications and as many field additions. The total depth required for the

multiplications is approximately 4n, as is for the additions. Using the formulas:

Gates(MQGrover) =
⌊
π
4 2blog2 qc

n
2

⌋
· (Gates(UMQ) +Gates(Us)),

Depth(MQGrover) =
⌊
π
4 2blog2 qc

n
2

⌋
· (Depth(UMQ) +Depth(Us)),

(2.8)

and the results from Subsections 2.3.1 and 2.3.2 we obtain an estimate of the cost of

Exhaustive search with Grover’s algorithm. The results are summarized in Table 2.3.

Gates Depth

q n T Clifford T Total

2 128 289.46 289.82 276.54 277.63

2 192 2123.21 2123.58 2109.13 2110.23

2 224 2139.88 2140.24 2125.36 2126.45

2 256 2156.46 2156.82 2141.55 2142.64

4 72 296.55 296.97 285.02 286.15

4 96 2121.80 2122.21 2109.44 2110.57

4 112 2138.47 2138.88 2125.66 2126.79

4 128 2155.04 2155.46 2141.85 2142.98

16 32 286.63 287.08 277.21 278.38

16 40 2103.60 2104.04 293.53 294.70

16 48 2120.38 2120.83 2109.80 2110.96

16 64 2153.63 2154.08 2142.22 2143.38

31 24 287.77 288.13 278.60 279.80

31 32 2108.83 2109.19 298.84 2100.03

31 40 2129.61 2129.97 2118.98 2120.17

31 48 2150.22 2150.58 2139.06 2140.25

31 56 2170.70 2171.06 2159.09 2160.29

32 32 2103.14 2103.60 293.66 294.84

32 40 2124.11 2124.56 2113.99 2115.16

32 48 2144.89 2145.35 2134.25 2135.43

32 56 2165.56 2166.02 2154.47 2155.65

64 24 294.31 294.78 285.62 286.80

64 32 2119.56 2120.02 2110.04 2111.22

64 40 2144.52 2144.99 2134.36 2135.54

64 48 2169.31 2169.77 2158.62 2159.81

128 24 2106.66 2107.13 297.94 299.13

128 32 2135.91 2136.38 2126.36 2127.54

128 40 2164.87 2165.34 2154.67 2155.87

256 16 285.22 285.69 277.63 278.82

256 24 2118.97 2119.44 2110.21 2111.41

256 32 2152.21 2152.69 2142.63 2143.83

Table 2.3: Cost of Exhaustive search on the MQ problem using Grover’s algorithm

The HybridF5 oracle.

The Hybrid Approach includes partial evaluation of n− k variables. The cost of this part

can be computed similarly as for the MQ oracle. We found that for this part we need
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6(n− k)km multiplications and the same amount of additions. The depth of this part of

the circuit is 6(n− k) times the depth of a multiplication and 6(n− k) times the depth of

an addition.

The rest of the cost of the Hybrid Approach comes from implementing Strassen’s

algorithm on the Macaulay matrix of size
(k+Dreg−1

Dreg

)
in a quantum circuit. The cost

is approximately 5
(k+Dreg−1

Dreg

)log2 7 field additions which can be realized in circuit depth

3 log2
(k+Dreg−1

Dreg

)
times the depth of an addition.

Using the formulas:

Gates(HybF5Grover) =
⌊
π
4 2blog2 qc

n−k
2

⌋
· (Gates(UHybF5) +Gates(Us)),

Depth(HybF5Grover) =
⌊
π
4 2blog2 qc

n−k
2

⌋
· (Depth(UHybF5) +Depth(Us)),

(2.9)

and the results from Subsections 2.3.1 and 2.3.2 we obtain an estimate of the cost of

the Hybrid F5 algorithm with Grover’s search algorithm. The results are summarized in

Table 2.4.

The Crossbread oracle.

Similarly as the HybridF5 oracle, the Crossbread oracle includes partial evaluation of

n− k variables, so this cost is the same. For each enumeration, the Strassen’s algorithm is

applied on a matrix of size
(
k+d−1
d

)
for a small d which costs 5

(
k+d−1
d

)log2 7 field additions

and total depth 3 log2
(
k+d−1
d

)
times the depth of an addition. An important feature of

the algorithm is that it can be split into two distinct parts: Sparse linear algebra on the

Macaulay matrix, and enumeration plus dense linear algebra to check the consistency of

the smaller system obtained from the kernel elements of M
(k)
D,d. The first part, that is more

memory demanding can always be performed on a classical computer, and the second part

which can make use of Grover’s algorithm can be performed on a quantum computer. This

is undoubtedly a big advantage over the quantum version of the Hybrid Approach, albeit

the later is in theory faster.

The cost of the entire algorithm for various parameters is given in Table 2.5.

The BooleanSolve oracle.

For the BooleanSolve oracle, the cost of the partial evaluation of n− k is the same as for

the previous oracles. The rest comes from consistency checking of a system of size
(

k
Dreg

)
using a sparse linear algebra technique from [33]. For simplicity, we will lower bound the

cost of this part by
(

k
Dreg

)2
log2

(
k

Dreg

)
additions (xor) in F2 of linear depth

(
k

Dreg

)
.

The cost of the entire algorithm for various parameters is given in Table 2.6.
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Gates Depth

q n k T Clifford T Total

2 120 59 254.23 2139.87 242.50 246.14

2 128 63 256.56 2143.84 244.59 248.26

2 168 83 267.73 2174.26 254.99 259.02

2 192 95 274.31 2197.09 261.18 265.52

2 232 115 285.12 2226.97 271.46 276.10

4 72 35 260.16 2134.03 249.27 252.01

4 96 47 273.40 2164.67 261.69 264.75

4 104 51 277.74 2171.29 265.80 268.89

4 128 63 290.64 2211.72 278.10 281.69

4 136 67 294.90 2218.18 282.19 285.80

16 48 23 273.00 2119.41 262.70 264.37

16 64 31 290.24 2151.34 279.11 281.02

16 72 35 298.74 2172.03 287.28 289.40

16 88 43 2115.61 2203.83 2103.57 2105.92

31 40 18 2118.76 2119.12 275.98 277.17

31 48 20 2136.74 2137.10 291.18 292.37

31 56 22 2154.25 2154.61 2106.37 2107.52

31 64 28 2172.07 2172.44 2112.07 2113.26

31 72 30 2189.42 2189.78 2127.15 2128.34

32 40 19 275.22 2118.45 265.26 266.81

32 56 27 296.67 2154.85 285.74 287.49

32 64 31 2107.24 2168.16 295.94 297.71

32 72 35 2117.75 2190.85 2106.10 2108.06

64 40 19 286.14 2129.21 276.02 277.50

64 48 23 298.92 2145.00 288.29 289.78

64 56 27 2111.59 2169.62 2100.51 2102.16

64 64 31 2124.16 2184.92 2112.70 2114.37

128 32 15 282.03 2113.34 272.43 273.72

128 40 19 296.99 2139.93 286.75 288.17

128 48 23 2111.78 2157.72 2101.01 2102.45

128 56 27 2126.44 2184.34 2115.23 2116.81

256 32 15 290.84 2122.03 281.12 282.39

256 40 19 2107.80 2150.62 297.44 298.82

256 48 23 2124.58 2170.41 2113.70 2115.10

256 56 27 2141.24 2199.03 2129.93 2131.45

Table 2.4: Cost of applying the Hybrid F5 algorithm on theMQ problem using Grover’s

algorithm
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Classical part Gates Depth

q n k Field. op. T Clifford T Total

2 128 21 269.79 276.69 277.05 266.20 267.31

2 160 25 291.87 291.60 291.96 280.54 281.64

2 192 27 2105.09 2107.26 2107.62 295.82 296.92

2 224 30 2118.36 2122.36 2122.73 2110.55 2111.65

2 296 35 2154.47 2156.92 2157.28 2144.46 2145.57

4 88 19 292.65 292.46 292.88 282.45 283.59

4 96 19 288.24 2100.74 2101.16 290.59 291.74

4 120 23 2115.69 2121.67 2122.09 2110.93 2112.07

4 128 24 2124.76 2128.93 2129.34 2118.02 2119.17

4 160 28 2154.32 2157.81 2158.23 2146.36 2147.50

16 48 17 285.02 284.87 285.33 275.77 276.93

16 56 19 294.79 297.51 297.96 288.01 289.18

16 72 23 2123.38 2122.54 2123.00 2112.41 2113.57

16 80 25 2133.03 2134.98 2135.43 2124.57 2125.74

16 96 28 2156.92 2161.71 2162.16 2150.86 2152.03

31 48 20 297.57 299.27 299.63 289.33 290.52

31 56 22 2112.01 2114.76 2115.13 2104.47 2105.66

31 64 24 2126.43 2130.17 2130.54 2119.57 2120.76

31 72 27 2140.84 2143.07 2143.43 2132.12 2133.31

31 80 28 2151.00 2160.81 2161.18 2149.67 2150.86

32 48 19 293.55 295.95 296.41 286.65 287.83

32 64 24 2126.43 2124.65 2125.12 2114.60 2115.78

32 72 26 2136.64 2140.14 2140.60 2129.79 2130.97

32 80 28 2151.00 2155.57 2156.03 2144.96 2146.14

32 88 29 2156.56 2173.44 2173.90 2162.63 2163.81

64 40 18 286.85 289.13 289.60 280.17 281.34

64 48 21 2105.20 2104.90 2105.37 295.45 296.63

64 56 24 2119.83 2120.56 2121.03 2110.69 2111.87

64 64 27 2138.24 2136.13 2136.60 2125.89 2127.07

64 72 27 2140.84 2160.58 2161.05 2150.14 2151.32

128 40 19 290.48 296.99 297.47 287.93 289.11

128 56 26 2130.80 2129.93 2130.41 2119.94 2121.12

128 64 27 2138.24 2154.98 2155.45 2144.71 2145.89

128 72 27 2140.84 2183.43 2183.90 2172.96 2174.15

256 32 15 268.54 290.84 291.32 282.39 283.58

256 48 23 2112.38 2124.58 2125.06 2114.96 2116.14

256 64 27 2138.24 2173.79 2174.26 2163.48 2164.67

Table 2.5: Cost of applying the Crossbread algorithm on theMQ problem using Grover’s

algorithm
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Gates Depth

n k T Clifford T Total

144 71 261.06 2112.88 248.76 269.46

160 79 265.52 2119.58 252.92 274.75

192 95 274.31 2138.99 261.18 288.25

208 103 278.66 2151.94 265.30 296.57

256 127 291.55 2177.46 277.60 2115.13

264 131 293.68 2180.51 279.65 2117.65

Table 2.6: Cost of BooleanSolve on the MQ problem using Grover’s algorithm
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3

The Sakumoto-Shirai-Hiwatari (SSH) 5-pass IDS scheme

3.1 Description of the SSH 5-pass IDS

In [41], Sakumoto, Shirai, and Hiwatari proposed two new identification schemes, a 3-pass

and a 5-pass IDS, based on the intractability of theMQ problem. In these specifications,

and documents related to this submission, we will refer to identification schemes from [41]

as the SSH 3-pass and 5-pass schemes.

Unlike previous public key schemes, the SSH schemes provably rely only on the MQ
problem (and the security of the commitment scheme), and not on other related problems

in multivariate cryptography such as the Isomorphism of Polynomials (IP) [48], the related

Extended IP [25] and IP with partial knowledge [52] problems or the MinRank problem

[22, 28].

The main idea from [41] is a clever splitting of the secret, that relies on the polar form

of the function F. With this technique, the secret s is split into s = r0 + r1, and the

public v = F(s) can be represented as v = F(r0) + F(r1) + G(r0, r1). In order for the

polar form not to depend on both shares of the secret, r0 and F(r0) are further split as

αr0 = t0 + t1 and αF(r0) = e0 + e1. Now, because of the bilinearity of the polar form it

holds that αv = (e1 + αF(r1) + G(t1, r1)) + (e0 + G(t0, r1)), and from only one of the

two summands, represented by (r1, t1, e1) and (r1, t0, e0), nothing can be learned about

the secret s.

Let (pk, sk) = ((F,v), s) ∈ RMQ be the public and private keys of the prover P (i.e.,

key generation just samples from theMQ relation). The SSH 5-pass IDS from [41] is given

in Figure 3.1.

3.2 Properties of the SSH 5-pass IDS

The following theorem summarizes the properties of the SSH 5-pass IDS.

Theorem 3.1. The 5-pass identification scheme of Sakumoto, Shirai, and Hiwatari [41]:

1. Has key relation RMQ(m,n,q),

2. Is KOW if the MQ search problem is hard on average,

3. Is perfectly correct,

4. Is computationally HVZK when the commitment scheme Com is computationally hid-

ing,

5. Is argument of knowledge for RMQ(m,n,q) with knowledge error 1
2 + 1

2q when the com-

mitment scheme Com is computationally binding,



P(pk, sk) V(pk)

//setup

r0, t0 ←R Fnq , e0 ←R Fmq
r1 ← s− r0

//commit

c0 ← Com(r0, t0, e0)

c1 ← Com(r1,G(t0, r1) + e0) com = (c0, c1) //challenge 1
α←R Fq

//first response ch1 = α

t1 ← αr0 − t0

e1 ← αF(r0)− e0 resp1 = (t1, e1) //challenge 2

ch2 ←R {0, 1}
//second response ch2

If ch2 = 0, resp2 ← r0

Else resp2 ← r1 resp2 //verify

If ch2 = 0, parse resp2 = r0, check

c0
?
= Com(r0, αr0 − t1, αF(r0)− e1)

Else, parse resp2 = r1, check

c1
?
= Com(r1, α(v− F(r1))−G(t1, r1)− e1)

Fig. 3.1: The SSH 5-pass IDS by Sakumoto, Shirai, and Hiwatari [41]

6. Is sound with soundness error 1
2 + 1

2q when the commitment scheme Com is computa-

tionally binding,

7. Has a q2-Extractor when the commitment scheme Com is computationally binding.

The first statement holds by construction. The second statement follows directly from

the first. The third, a stronger version of the fourth1 and the fifth were proven in [41]. The

last two statements were proven in [16].

1 Sakumoto et al. [41] proved that their 5-pass scheme is statistically zero knowledge when the commit-

ment scheme Com is statistically hiding which implies (honest-verifier) zero knowledge. Relaxing the

requirements of Com to computationally hiding, weakens the result to computationally HVZK, since

now, it is possible to distinguish (albeit only with negligible probability) whether the commitment was

produced in a valid run of the protocol.
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4

The Fiat-Shamir Transform

The Fiat-Shamir paradigm [29] for transforming canonical 3-pass identification schemes to

signatures has been one the most popular methods for obtaining classically secure signature

schemes. In this chapter, we present the transform, known results about its security, as

well as its limitations.

4.1 Description of the Fiat-Shamir Transform

In what follows, let IDSr = (KGenIDS,Pr,Vr) denote the parallel composition of r rounds

of the identification scheme IDS = (KGenIDS,P,V).

Construction 4.1 (Fiat-Shamir transform [29]) Let k ∈ N the security parameter,

IDS = (KGenIDS,P,V), where P = (P0,P1), V = (ChS,Vf IDS) a canonical 3-pass Identi-

fication scheme that achieves soundness with soundness error κ. Select r, the number of

(parallel) rounds of IDS, such that κr = negl(k), and that the challenge space Cr of the

composition IDSr, has exponential size in k. Moreover, select a cryptographic hash function

H : {0, 1}∗ → Cr.

A signature scheme derived from IDS via the Fiat-Shamir transform is a triplet of

algorithms (KGen,Sign,Vf) defined as in Figures 4.1,4.2 and 4.3.

KGen()

(pk, sk)← KGenIDS

Return (pk, sk)

Fig. 4.1: Fiat-Shamir key generation



Sign(sk,M)

For j ∈ {1, . . . , r} do

(state(j), com(j))← P0(sk)

state := (state(1), . . . , state(r))

com := (com(1), . . . , com(r))

σ0 := com

ch← H(pk,M, σ0)

Parse ch as ch = (ch(1), ch(2), . . . , ch(r)), ch(j) ∈ C

For j ∈ {1, . . . , r} do

resp(j) ← P1(state(j), ch(j))

resp := (resp(1), . . . , resp(r))

σ1 := resp

Return σ = (σ0, σ1)

Fig. 4.2: Fiat-Shamir signature generation

Vf(pk, σ,M)

Parse σ = (σ0, σ1)

Parse σ0 as σ0 = (com(1), . . . , com(r))

ch← H(pk,M, σ0)

Parse ch as ch = (ch(1), ch(2), . . . , ch(r)), ch(j) ∈ C

Parse σ1 as σ1 = (resp(1), . . . , resp(r))

For j ∈ {1, . . . , r} do

b(j) ← Vf IDS(pk, com(j), ch(j), resp(j))

b← b(1) ∧ b(2) ∧ · · · ∧ b(r)

Return b

Fig. 4.3: Fiat-Shamir signature verification

4.2 Security of the Fiat-Shamir Transform

The security of the Fiat-Shamir transform has been investigated for over two decades.

The first security proof of the transform was given in the seminal paper of Pointcheval

and Stern [49]. They showed that assuming honest-verifier zero knowledge and special

soundness of the identification scheme, Construction 5.1 gives EU-CMA secure signatures.

Their proof is in the random oracle model and is based on the (now famous) forking

lemma. The two main techniques introduced in the forking lemma are rewinding of the

adversary and adaptively programming the random oracle. While these have proven to be

quite powerful techniques in ROM reductions, they come with a drawback - the reduction

is not tight - there is loss of factor the number of adversary’s random oracle queries.

Later, Ohta and Okamoto [47] provide a different proof using a modular technique and

similar assumptions on the identification scheme. Abdalla et al.[1] show that a signature
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via the Fiat-Shamir transform is EU-CMA if and only if the identification scheme is IMP-

PA, thus minimizing the needed assumption on the identification scheme.

Lately, the main two techniques from the forking lemma cause even more problems

in the quantum-accessible random oracle model (QROM) and showing the Fiat-Shamir

transform secure in the QROM has proven to be a tedious task (see [2, 23, 55]). The only

known way to show security of the Fiat-Shamir transform in the QROM setting [23] is

using oblivious commitments. Here the need for rewinding is replaced by introducing an

additional trapdoor assumption on the commitments, which in itself is a very strong and

problematic assumption.

Very recently, multi-user security of the Fiat-Shamir transform has been investigated in

[39]. Although thle authors of [39] attempt to provide a more general framework for multi-

user security (previously, tight results have been obtained only for Schnorr like signatures

[10]), the assumptions on the IDS still seem too strong to be applicable on many post-

quantum schemes. Thus for now, the only general result remains the one from [31], with

a loss of factor - the number of users in the scenario.
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5

The Fiat-Shamir Transform for 5-pass Identification

Schemes

For several intractability assumptions, the most efficient IDS are five pass, i.e. IDS where a

transcript consists of five messages. Here, efficiency refers to the size of all communication

of sufficient rounds to make the soundness error negligible. This becomes especially relevant

when one wants to turn an IDS into a signature scheme as it is closely related to the

signature size of the resulting scheme.

As said in the Preliminaries (Chapter 1), the most common 5-pass identification

schemes in the literature are those with challenge spaces C1 and C2 restricted to q and

2 respectively, that we called q2 -Identification Schemes. In this chapter, we restrict our

attention to such schemes and describe a transformation from passively secure q2 - IDS to

unforgeable signatures. The transformation is a direct generalization of the Fiat-Shamir

transform for 3-pass schemes (see Chapter 4). The description and security argument

follow closely the one from [16], where we first introduced MQDSS.

Note that the Fiat-Shamir transform can be generalized to more general canonical

2n+1 schemes with non-binary challenge spaces. However, this makes the description and

proofs unnecessarily complex, especially because such schemes are not at all common in

the literature.

5.1 A Fiat-Shamir transform for q2 -Identification Schemes

As in the previous chapter, let IDSr = (KGenIDS,Pr,Vr) denote the parallel composition

of r rounds of the identification scheme IDS = (KGenIDS,P,V).

Construction 5.1 (Fiat-Shamir transform for q2 -Identification Schemes) Let k ∈
N be the security parameter and let IDS = (KGenIDS,P,V), where P = (P0,P1,P2),
V = (ChS1,ChS2,Vf IDS) be a q2 -Identification Scheme that achieves soundness with sound-

ness error κ. Select r, the number of (parallel) rounds of IDS, such that κr = negl(k), and

that the challenge spaces Cr1 and Cr2 of the composition IDSr, have exponential size in k.

Moreover, select two cryptographic hash functions H1 : {0, 1}∗ → Cr1, H2 : {0, 1}∗ → Cr2.

A q2 -signature scheme q2 -Dss(1k) is a triplet of algorithms (KGen,Sign,Vf) defined as

in Figures 5.1,5.1 and 5.3.



KGen()

(pk, sk)← KGenIDS

Return (pk, sk)

Fig. 5.1: q2 -signature scheme: Key generation

Sign(sk,M)

For j ∈ {1, . . . , r} do

(state(j), com(j))← P0(sk)

state := (state(1), . . . , state(r))

com := (com(1), . . . , com(r))

σ0 := com

h1 ← H1(pk,M, σ0)

Parse h1 as h1 = (ch
(1)
1 , ch

(2)
1 , . . . , ch

(r)
1 ), ch

(j)
1 ∈ C1

For j ∈ {1, . . . , r} do

(state(j), resp
(j)
1 )← P1(state(j), ch

(j)
1 )

state := (state(1), . . . , state(r))

resp1 := (resp
(1)
1 , . . . , resp

(r)
1 )

σ1 := resp1

h2 ← H2(pk,M, σ0, σ1)

Parse h2 as h2 = (ch
(1)
2 , ch

(2)
2 , . . . , ch

(r)
2 ), ch

(j)
2 ∈ C2

For j ∈ {1, . . . , r} do

resp
(j)
2 ← P2(state(j), ch

(j)
2 )

resp2 := (resp
(1)
2 , . . . , resp

(r)
2 )

σ2 := resp2

Return σ = (σ0, σ1, σ2)

Fig. 5.2: q2 -signature scheme: Signature generation

The correctness of the scheme follows immediately from the correctness of the IDS.

5.2 Security of q2-signature schemes.

The security of the above transform was proven in [16]. The proof is in the random oracle

model and builds on techniques introduced by Pointcheval and Stern [49]. Namely, we

generalized the well known Forking Lemma and showed that a particular type of rewinding

of the adversary together with adaptive programming of the random oracles is useful for

showing EU-CMA security. For completeness of this document, we include the complete

security reduction in Appendix A.

In summary, the following theorem holds for q2-signature schemes:

Theorem 5.2 (EU-CMA security of q2-signature schemes [16]). Let k ∈ N, IDS(1k)

a q2-IDS that has a key relation R, is KOW secure, is honest-verifier zero-knowledge,

and has a q2-extractor E. Then q2 -Dss(1k), the q2-signature scheme derived applying

Construction 5.1 is existentially unforgeable under adaptive chosen message attacks.
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Vf(pk, σ,M)

Parse σ = (σ0, σ1, σ2)

Parse σ0 as σ0 = (com(1), . . . , com(r))

h1 ← H1(pk,M, σ0)

Parse h1 as h1 = (ch
(1)
1 , ch

(2)
1 , . . . , ch

(r)
1 ), ch

(j)
1 ∈ C1

Parse σ1 as σ1 = (resp
(1)
1 , . . . , resp

(r)
1 )

h2 ← H2(pk,M, σ0, σ1)

Parse h2 as h2 = (ch
(1)
2 , ch

(2)
2 , . . . , ch

(r)
2 ), ch

(j)
2 ∈ C2

Parse σ2 as σ2 = (resp
(1)
2 , . . . , resp

(r)
2 )

For j ∈ {1, . . . , r} do

b(j) ← Vf IDS(pk, com(j), ch
(j)
1 , resp

(j)
1 , ch

(j)
2 , resp

(j)
2 )

b← b(1) ∧ b(2) ∧ · · · ∧ b(r)

Return b

Fig. 5.3: q2 -signature scheme: Signature verification
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6

Notations

Throughout this part we will use the standard mathematical notations introduced in

Section 1.1. In addition, in Chapter 9 we will use the following notations:

• a+ b - sum of a and b

• a− b - difference of a and b

• a · b - product of a and b

• a/b - quotient of a and b

• log2 a - logarithm to the base 2 of a

• a mod b - the non-negative remainder of the integer division of a and b

• a|b - a is a divisor of b

• dae - ceiling function, returns the smallest integer greater than or equal to a

• bac - floor function, returns the greatest integer larger than or equal to a

• a← b - assignment operator, a takes the value of b

• a� b - logical left shift, with b being non-negative integer. It is equivalent to a · 2b
• a ∧ b - logical and operator

• a == b - logical equal test, returns true (1) if a = b and false (0) if a 6= b

• a <> b - logical non-equal test, returns true (1) if a 6= b and false (0) if a = b

• [ ] - empty array of bytes or bits

• a[i] - the i-th element of the array a. The indexing of elements starts from 0.

• [f(j)|j = 0..n− 1] - array with elements f(j), when j is iterated from 0 through n− 1

• len(a) - returns the length of a (the number of elements in a if we consider it as an

array)

• a||b - concatenation of a and b. If we look at a = [a[0], a[1], . . . , a[la]] and b =

[b[0], b[1], . . . , b[l2]] as arrays, then a||b is the array [a[0], a[1], . . . , a[la], b[0], b[1], . . . , b[l2]]

• append(a, b) - appends the element b to the end of the array a

• subarray(a, b, c) - returns the subarray of a from index b to c − 1, i.e. returns

[a[b], . . . , a[c− 1]]

• trunc(a, b) - truncates the b least significant bits of a, with a being a bit-array and b a

non-negative integer. If we look at a in its array representation a = [a[0], a[1], . . . , a[la]],

then trunc(a, b)=[a[0], a[1], . . . , a[b− 1]]. It is equivalent to subarray(a, 0, b), for a bit-

array a.

• trim(a, b) - truncates the b most significant bits of a, with a being a bit-array and b a

non-negative integer. It is equivalent to subarray(a,len(a)− b,len(a)), for a bit-array a.

• mask(a, b, c) - sets the bits a[b], . . . , a[c] to 0



• SHAKE256(seed, 136) - interface for the digest of SHAKE256 on input seed as stan-

dardized in FIPS 202, the SHA-3 standard [45].

• SHAKE256absorb(seed) - interface for the absorb phase of SHAKE256 for extendable

output

• SHAKE256squeeze(state)- interface for the squeeze phase of SHAKE256 for extendable

output. To obtain extendable output, repeatedly call SHAKE256squeeze(state) until

needed
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7

MQDSS High Level Description

In this chapter, we define the signature scheme MQDSS-q-n in generic terms by describing

the required parameters, the functions KGen, Sign and Vf, and the necessary auxiliary

functions. In Chapter 8 we will provide concrete parameters and in Chapter 9 we provide

a detailed instantiations of the auxiliary functions. A detailed low-level description will be

given in Chapter 9.

MQDSS-q-n is a digital signature scheme consisting of three algorithms KGen, Sign and

Vf, defined in Sections 7.2, 7.3 and 7.4. The global parameters and auxiliary functions are

defined in Section 7.1.

7.1 MQDSS Parameters Description and Auxiliary Functions

Let k be the security parameter.

MQDSS-q-n uses the following additional parameters:

• A positive integer n ∈ N - the number of variables and equations of the system F,

• A positive integer q ∈ N (a prime or a prime power) - the order of the finite field Fq,
• A positive integer r ∈ N - the number of rounds. This parameter is normally r =⌈

k/ log2
2q
q+1

⌉
, but it can also be chosen independently.

MQDSS-q-n uses the following auxiliary functions:

• A pseudorandom generator PRGsk : {0, 1}k → {0, 1}3k used to randomly generate

three seeds.

• A pseudorandom generator PRGs : {0, 1}k → {0, 1}ndlog2 qe used to randomly generate

the secret key.

• A pseudorandom generator PRGrte : {0, 1}k × {0, 1}∗ → {0, 1}3rndlog2 qe used to gen-

erate pseudorandom values during the signature generation.

• An extendable output function XOFF : {0, 1}k → {0, 1}Flen , where for q = 2, Flen =

n · (n·(n−1)2 + n) and for q > 2, Flen = n · (n·(n+1)
2 + n) dlog2 qe. This function is used

for generating a multivariate system F by expanding a seed outputted by PRGsk.

• Three cryptographic hash functions H : {0, 1}∗ → {0, 1}k, H1 : {0, 1}∗ → Fqr, and

H2 : {0, 1}∗ → {0, 1}r.
• A string commitment function Com0 : Fqn × Fqn × Fqn → {0, 1}k and

• A string commitment function Com1 : Fqn × Fqn → {0, 1}k,



7.2 MQDSS Key Generation

The MQDSS-q-n key generation algorithm formally samples a MQ relation. Practically,

the algorithm is realized as shown in Figure 7.1.

KGen()

sk←R {0, 1}k

SF, Ss, Srte ← PRGsk(sk)

F← XOFF(SF)

s← PRGs(Ss)

v← F(s)

pk := (SF,v)

Return (pk, sk)

Fig. 7.1: MQDSS-q-n key generation

In more detail, given the security parameter k, the key generation algorithm KGen()

performs the following operations:

• Randomly sample a secret key of k bits sk←R {0, 1}k.
• Use the secret key sk as input (seed) to PRGsk to derive the following values:

– SF, a seed of k bits from which the system parameter F is expanded;

– Ss, a seed of k bits from which the secret input to the MQ function is generated;

– Srte, a seed of k bits that is used to sample all vectors r
(i)
0 , t

(i)
0 and e

(i)
0 , i ∈

{1, . . . , r}. Note that this seed is not yet needed during key generation, but is

required during signing.

• Expand the seed SF using XOFF to a Flen bits long string, where for q = 2, Flen =

n · (n·(n−1)2 +n) and for q > 2, Flen = n · (n·(n+1)
2 +n) dlog2 qe. Parse the pseudorandom

string as an MQ system F ∈MQ(n, n,Fq).
• Use the seed Ss as input to the PRGs to obtain s, a string of length n dlog2 qe bits,

that will be used as the secret input to the MQ function;

• Parse s as a vector s ∈ Fnq , and evaluate the MQ system F(s) to obtain the vector

v ∈ Fnq .

• Set pk := (SF,v) as the public key.

• Return the public/secret key pair (pk, sk). The public pk is of length k + n dlog2 qe
bits, and the secret sk of length k bits.

The obtained public key pk is of length k+ n dlog2 qe bits, and the secret key sk of length

k bits.

7.3 MQDSS Signature Generation

For the MQDSS-q-n signing procedure Sign(), we assume as input a message M ∈ {0, 1}∗
and a secret key sk. The signing procedure is given in Figure 7.2.
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Sign(sk,M)

SF, Ss, Srte ← PRGsk(sk)

F← XOFF(SF)

s← PRGs(Ss)

pk := (SF,F(s))

R← H(sk||M)

D ← H(pk||R||M)

r
(1)
0 , . . . , r

(r)
0 , t

(1)
0 , . . . , t

(r)
0 , e

(1)
0 , . . . , e

(r)
0 ← PRGrte(Srte, D)

For j ∈ {1, . . . , r} do

r
(j)
1 ← s− r

(j)
0

c
(j)
0 ← Com0(r

(j)
0 , t

(j)
0 , e

(j)
0 )

c
(j)
1 ← Com1(r

(j)
1 ,G(t

(j)
0 , r

(j)
1 ) + e

(j)
0 )

com(j) := (c
(j)
0 , c

(j)
1 )

σ0 ← H(com(1)||com(2)|| . . . ||com(r))

ch1 ← H1(D,σ0)

Parse ch1 as ch1 = (α(1), α(2), . . . , α(r)), α(j) ∈ Fq
For j ∈ {1, . . . , r} do

t
(j)
1 ← α(j)r

(j)
0 − t

(j)
0 , e

(j)
1 ← α(j)F(r

(j)
0 )− e

(j)
0

resp
(j)
1 := (t

(j)
1 , e

(j)
1 )

σ1 ← (resp
(1)
1 ||resp

(2)
1 || . . . ||resp

(r)
1 )

ch2 ← H2(D,σ0, ch1, σ1)

Parse ch2 as ch2 = (b(1), b(2), . . . , b(r)), b(j) ∈ {0, 1}
For j ∈ {1, . . . , r} do

resp
(j)
2 ← r

(j)

b(j)

σ2 ← (resp
(1)
2 ||resp

(2)
2 || . . . ||resp

(r)
2 ||c

(1)

1−b(1) ||c
(2)

1−b(2) || . . . ||c
(r)

1−b(r))

Return σ = (R, σ0, σ1, σ2)

Fig. 7.2: MQDSS-q-n signature generation

In more details, the signer:

• First effectively repeats the KGen() procedure i.e.,

– derives SF, Ss, Srte from PRGsk(sk),

– exapnds F = XOFF(SF) and s = PRGs(Ss) and

– derives the public key pk := (SF,F(s)).

• Derives a message dependent random value R = H(sk ‖ M).

• Using this random value R, the signer computes the randomized message digest D =

H(R ‖ m). The value R must be included in the signature, so that a verifier can derive

the same randomized digest.

• The signer then uses the pseudorandom generator PRGrte to sample the vectors

r
(1)
0 , . . . , r

(r)
0 , t

(1)
0 , . . . , t

(r)
0 , e

(1)
0 , . . . , e

(r)
0 from Srte and D.

• For each j ∈ {1, . . . , r}
– Computes r

(j)
1 as the difference s− r

(j)
0 ,
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– Commits to (r
(j)
0 , t

(j)
0 , e

(j)
0 ) and to (r

(j)
1 ,G(t

(j)
0 , r

(j)
1 ) + e

(j)
0 ) applying the commit-

ment functions Com0 and Com1 respectively, to obtain c
(j)
0 and c

(j)
1 respectively,

– Sets com(j) := (c
(j)
0 , c

(j)
1 ).

• Computes the second part of the signature σ0 as a digest over the concatenation of all

commitments σ0 ← H(com(1)||com(2)|| . . . ||com(r)),

• Derives the first challenge ch1 = (α(1), α(2), . . . , α(r)) by applying H1 to (D,σ0).

• Using the α(j) as individual challenges per round, the signer computes t
(j)
1 ← α(j)r

(j)
0 −

t
(j)
0 and e

(j)
1 ← α(j)F(r

(j)
0 )− e

(j)
0 for all j ∈ {1, . . . , r},

• Sets the responses resp
(j)
1 := (t

(j)
1 , e

(j)
1 ) for all j ∈ {1, . . . , r}.

• The concatenation of all responses resp
(j)
1 gives the third part of the signature σ1 ←

(resp
(1)
1 ||resp

(2)
1 || . . . ||resp

(r)
1 ).

• The signer computes ch2 by applying H2 to the tuple (D,σ0, ch1, σ1) and parses it as

r binary challenges b(j) ∈ {0, 1}.
• For all j ∈ {1, . . . , r}, the signer computes the second responses resp

(j)
2 ← r

(j)

b(j)
.

• Finally, the signer computes the last part of the signature as

σ2 ← (resp
(1)
2 ||resp

(2)
2 || . . . ||resp

(r)
2 ||c

(1)

1−b(1) ||c
(2)

1−b(2) || . . . ||c
(r)

1−b(r)), and

• Outputs the signature σ = (R, σ0, σ1, σ2).

The complete signature is of the following form:

σ = (R,H(com(1)||com(2)|| . . . ||com(r)), (resp
(1)
1 ||resp

(2)
1 || . . . ||resp

(r)
1 ),

(resp
(1)
2 ||resp

(2)
2 || . . . ||resp

(r)
2 ||c

(1)

1−b(1) ||c
(2)

1−b(2) || . . . ||c
(r)

1−b(r)))

As each element of Fq requires dlog2 qe bits, the size of the signature is (2+r)k+3rn dlog2 qe
bits.

7.4 MQDSS Signature Verification

Upon receiving a message M , a signature σ = (R, σ0, σ1, σ2), and a public key pk = (SF,v),

the verifier performs the verification routine as listed in Figure 7.3.

In more detail, the main goal of the verification process is to reconstruct the missing

commitments, and calculate a value σ′0 that will be verified against the inputted σ0. The

whole procedure is as follows:

• Using the pubic key pk = (SF,v) and the value R from the signature σ, compute

the system parameter F ← XOFF(SF) and the randomized message digest D ←
H(pk||R||M).

• Since the signature contains σ0, compute the first challenge ch1 as ch1 ← H1(D,σ0)

and parse it as ch1 = (α(1), α(2), . . . , α(r)), α(j) ∈ Fq
• Next, compute the challenge ch2 ← H2(D,σ0, ch1, σ1), from the two parts σ0, σ1

of the signature and the computed ch1 in the previous step. Parse it as ch2 =

(b(1), b(2), . . . , b(r)), b(j) ∈ {0, 1}.
• Parse the two signature parts σ1 and σ2 as σ1 = (resp

(1)
1 ||resp

(2)
1 || . . . ||resp

(r)
1 ) and

σ2 = (resp
(1)
2 ||resp

(2)
2 || . . . ||resp

(r)
2 ||c

(1)

1−b(1) ||c
(2)

1−b(2) || . . . ||c
(r)

1−b(r)) respectively.
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Vf(pk, σ,M)

F← XOFF(SF)

D ← H(pk||R||M)

ch1 ← H1(D,σ0)

Parse ch1 as ch1 = (α(1), α(2), . . . , α(r)), α(j) ∈ Fq
ch2 ← H2(D,σ0, ch1, σ1)

Parse ch2 as ch2 = (b(1), b(2), . . . , b(r)), b(j) ∈ {0, 1}

Parse σ1 as σ1 = (resp
(1)
1 ||resp

(2)
1 || . . . ||resp

(r)
1 )

Parse σ2 as σ2 = (resp
(1)
2 ||resp

(2)
2 || . . . ||resp

(r)
2 ||c

(1)

1−b(1) ||c
(2)

1−b(2) || . . . ||c
(r)

1−b(r))

For j ∈ {1, . . . , r} do

Parse resp
(j)
1 as resp

(j)
1 = (t

(j)
1 , e

(j)
1 )

If b(j) == 0

r
(j)
0 = resp

(j)
2

c
(j)
0 ← Com0(r

(j)
0 , α(j)r

(j)
0 − t

(j)
1 , α(j)F(r

(j)
0 )− e

(j)
1 )

else

r
(j)
1 = resp

(j)
2

c
(j)
1 ← Com1(r

(j)
1 , α(j)(v − F(r

(j)
1 ))−G(t

(j)
1 , r

(j)
1 )− e

(j)
1 )

com(j) := (c
(j)
0 , c

(j)
1 )

σ′0 ← H(com(1)||com(2)|| . . . ||com(r))

Return σ′0 == σ0

Fig. 7.3: MQDSS-q-n signature verification

• Since the verifier knows the values b(j) from the previous step, he knows which of the

two parts of the commitments com(j) were included in σ2, and can now proceed to

recovering the other, missing part. This is done for all j ∈ {1, . . . , r} as follows:

– Parse resp
(j)
1 to obtain (t

(j)
1 , e

(j)
1 ), and

– if b(j) == 0 compute c
(j)
0 as c

(j)
0 ← Com0(r

(j)
0 , α(j)r

(j)
0 − t

(j)
1 , α(j)F(r

(j)
0 ) − e

(j)
1 ),

otherwise compute c
(j)
1 as c

(j)
1 ← Com1(r

(j)
1 , α(j)(v−F(r

(j)
1 ))−G(t

(j)
1 , r

(j)
1 )− e

(j)
1 )

– Set com(j) := (c
(j)
0 , c

(j)
1 )

• Calculate σ′0 ← H(com(1)||com(2)|| . . . ||com(r)) from the obtained commitments com(j)

• Return the truth value of σ′0 == σ0. This means that for verification to succeed,

σ′0 = σ0 should hold.
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8

Parameter Sets

8.1 Reference Parameter Sets

Recall (c.f. Section 7.1) that MQDSS-q-n is parametrized by the parameters:

• A positive integer k ∈ N - the security parameter,

• A positive integer n ∈ N - the number of variables and equations of the system F,

• A positive integer q ∈ N (a prime or a prime power) - the order of the finite field Fq,
• A positive integer r ∈ N - the number of rounds.

We propose the following two parameter sets as reference parameter sets of MQDSS:

• MQDSS-31-48

– k = 256, q = 31, n = 48, r = 269;

• MQDSS-31-64

– k = 384, q = 31, n = 64, r = 403.

The following Table 8.1 summarizes the basic characteristics of these two parameter sets.

Security

category
k q n r

Public key

size (bytes)

Secret key

size (bytes)

Signature

size (bytes)

MQDSS-31-48 1-2 256 31 48 269 62 32 32882

MQDSS-31-64 3-4 384 31 64 403 88 48 67800

Table 8.1: Basic characteristics of the refernce parameter sets

We have calculated the key sizes and the signature size based on the formulas provided

in Section 7.1: The public key is of length k+ n dlog2 qe bits, the secret key sk of length k

bits and the signature of length (2 + r)k + 3rn dlog2 qe bits. The number of rounds r has

been calculated as r =
⌈
k/ log2

2q
q+1

⌉
.

We also summarize the strength of the reference parameter sets with respect to the

best classical and quantum attacks (see Chapter 10). The summary is given in Table 8.2.

For more detailed analysis of the algorithms see Chapter 2.

Best classical attack Best quantum attack

algorithm Field op. algorithm Gates Depth

MQDSS-31-48 HybridF5 2159 Crossbread 299 290

MQDSS-31-64 HybridF5 2205 Crossbread 2130 2120

Table 8.2: Best classical and quantum attacks against the reference parameter sets



As part of the submission package we provide reference (and additional) implementa-

tions for the two reference parameter sets MQDSS-31-48 and MQDSS-31-64. The details

of the implementations are given in Chapter 9 and Chapter 15.

We emphasize that the chosen reference parameter sets are not the only that are suit-

able for use, and that should be considered by NIST and the broader community in the

evaluation process. In the next section we provide additional parameter sets of comparable

performance and security strength but over different fields. We decided to keep the original

choice of the field as was initially proposed in [16], and to provide implementations only

for parameters over F31. We justify our decision in the next section. To match the security

levels identified by NIST, we changed the number of rounds in MQDSS-31-64 compared

to [16] from 269 to 403 to match Category 3 and 4, and additionally proposed the lower

security set MQDSS-31-48 (not in [16]). Furthermore, we decided not to include a param-

eter set for the Categories 5 and 6 defined by NIST. Over F31 this would be MQDSS-31-88

or even MQDSS-31-96. As can be seen from Table 8.3 this parameter set (or any for that

mater in the category) has signature size in the range of 120KB, which we find a bit out

of the practical range of parameters. Nevertheless, if NIST shows interest in such a pa-

rameter set, it is simple to extend our implementations and performance analysis to this

set as well.

We continue the discussion about the additional parameter sets in the next Section.

8.2 Additional Parameter Sets

In addition to MQDSS-31-48 and MQDSS-31-64 we recommend additional parameter sets

of comparable security strength i.e. Categories 1-4, as identified by NIST [46], but over

different fields. We also provide parameter sets for the much higher security categories 5

and 6. Their basic characteristics and best attacks are given in Tables 8.3 and 8.4. It is

important to note that for the additional recommended parameter sets, we do not provide

implementation.

It can be noticed that within a security category, the parameter sets over F16 and F32

are of very similar performance characteristics as the reference parameter sets over F31.

However, we decided not to include these in the reference parameter sets.

Our decision is based on two main observations: 1. The field F31 is the most natural

choice with respect to implementation of the field arithmetic, since any platform already

contains instructions for multiplication of natural numbers, but no instructions for F16 or

F32. For these fields in general we would have to design specific representations for fast

multiplication, or use table lookup intructions. 2. Our optimized implementation using

AVX2 instructions is much faster over F31 than F16 or F32. Although, NIST does not

require such an implementaion (at least at this stage of the standardisation process), we

believe that in practice it is very relevant.

On the other hand, as F16 and F32 are binary fields, these parameter sets are partic-

ularly interesting for hardware implementations. Therefore for hardware, we recommend

using them, particularly MQDSS-16-56 and MQDSS-16-72 rather than MQDSS-31-48 and

MQDSS-31-64.

Moe generally, in the evaluation process we encourage NIST and the community to treat

MQDSS-16-56, MQDSS-16-72, MQDSS-32-48 and MQDSS-32-64 with the same level of

attention as the reference parameter sets.
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Security

category
k q n r

Public key

size (bytes)

Secret key

size (bytes)

Signature

size (bytes)

1-2 256 4 88 378 54 32 37108

1-2 256 16 56 281 60 32 32660

1-2 256 32 48 268 62 32 32760

1-2 256 64 40 262 62 32 32028

3-4 384 4 128 567 80 48 81744

3-4 384 16 72 421 84 48 65772

3-4 384 32 64 402 88 48 67632

3-4 384 64 64 393 102 48 82626

5-6 512 4 160 756 104 64 139232

5-6 512 16 96 562 112 64 117024

5-6 512 31 88 537 119 64 123101

5-6 512 32 88 536 119 64 122872

5-6 512 64 88 524 130 64 137416

Table 8.3: Basic characteristics of the additional parameter sets

Security

category

Best classical attack Best quantum attack

q n algorithm Field op. algorithm Gates Depth

1-2 4 88 Crossbread 2152 Crossbread 293 283

1-2 16 56 Crossbread 2163 Crossbread 298 289

1-2 32 48 HybridF5 2159 Crossbread 296 288

1-2 64 40 HybridF5 2143 Crossbread 289 281

3-4 4 128 Crossbread 2226 Crossbread 2129 2119

3-4 16 72 HybridF5 2210 Crossbread 2123 2113

3-4 32 64 HybridF5 2205 Crossbread 2125 2115

3-4 64 64 HybridF5 2217 Crossbread 2136 2127

5-6 4 160 Crossbread 2287 Crossbread 2158 2147

5-6 16 96 HybridF5 2273 Crossbread 2162 2152

5-6 31 88 HybridF5 2273 Crossbread 2179 2168

5-6 32 88 HybridF5 2274 Crossbread 2174 2164

5-6 64 88 HybridF5 2291 Crossbread 2203 2192

Table 8.4: Best classical and quantum attacks against the additional parameter sets
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9

Low Level Description of MQDSS

In Chapter 7, we described the MQDSS scheme in general terms. Here, we complete the

specification by giving the byte-level details that should allow an implementer to write a

compatible implementation.

This low level description will focus on our reference parameter sets as defined in Sec-

tion 8.1. Thus, we will assume that q = 31, and the underlying field of operation is F31.

To provide a slightly more general framework, we will define all functions in terms of

parameters k, n ∈ N, such that 64|k and 8|n. (Such a description will allow application of

the following detailed specifications not only to the reference parameter sets, but also to

parameter sets over F31 of different security level.)

9.1 Auxiliary Functions

9.1.1 Secret Key Expansion

The secret key of MQDSS, denoted by sk is a k/8-byte string. It is used in the key

generation process (see Section 7.2) and in the signing process (see Section 7.3) where it

is first expanded to three separate values: SF, Ss and Srte. This is done by expanding to

3k/8 bytes, and interpreting the first k/8 bytes as SF, the second k/8 as Ss and the last

k/8 as Srte (see Algorithm 1).

Algorithm 1 SecretKeyExpansion(sk)
Input: sk

block ← SHAKE256(sk, 136)

SF ← subarray(block, 0, k/8)

Ss ← subarray(block, k/8, 2k/8)

Srte ← subarray(block, 2k/8, 3k/8)

Output: SF, Ss, Srte

9.1.2 Expanding SF, Ss and Srte

The functions XOFF, PRGs and PRGrte are instantiated using rejection sampling of

the output of the extendable output function SHAKE256 standardized in FIPS 202, the

SHA-3 standard [45]. The rejection sampling works as follows: For each output byte of

SHAKE256, we ignore the most significant three bits. We discard the resulting value if

it is equal to 31 when interpreted as an unsigned integer (i.e. all five bits are set). See

Algorithm 2 for details.



Algorithm 2 RejectSample(seed, len)
Input: seed, len

array31← [ ]

state← SHAKE256absorb(seed)

while len(array31) < len do

block ← SHAKE256squeeze(state)

i← 0

while i <len(block) ∧ len(array31) < len do

cand← block[i]

if trunc(cand, 5) <> 11111 then

append(array31,mask(cand, 5, 7))

end if

i← i+ 1

end while

end while

Output: array31

Using Algorithm 2 we can easily expand all the necessary values. F is obtained by direct

application of the RejectSample algorithm. The output elements are then interpreted as

integers. The elements of F are in signed integers between -15 and 15, inclusive. We

bring the randomly sampled integer to this domain by subtracting 15. Algorithm 3 is our

wrapper for this function.

Algorithm 3 MQ system(SF)
Input: SF

F←RejectSample(SF, n(n(n+1)
2

+ n))

for 0 6 i <len(F) do

F[i]← F[i]− 15

end for

Output: F

The secret vector s is derived similarly, with the crucial difference that the secret key

elements are not transformed to signed integers. The random elements for the vectors r0,

t0 and e0 are derived from the seed Srte in exactly the same way as the secret vector.

Note that we derive all vectors of the same type for all rounds consecutively, i.e. r
(1)
0 , r

(2)
0 ,

r
(3)
0 , . . . , t

(1)
0 , t

(2)
0 , . . . , e

(1)
0 , e

(2)
0 , . . . rather than r

(1)
0 , t

(1)
0 , e

(1)
0 , r

(2)
0 , t

(2)
0 , e

(3)
0 , . . . . (See

Algorithm 4 and Algorithm 5).

Algorithm 4 SecretVector(Ss)
Input: Ss

s←RejectSample(SF, n)

Output: s

9.1.3 Evaluating F

At the core of the scheme lies evaluation of the F function, and its bilinear counterpart G.

The evaluation of F can roughly be divided in two parts: the generation of all quadratic

terms, and computation of the resulting polynomials for given terms.

For the generation of the quadratic terms, we construct the terms in a variant of

graded reverse lexicographic order. We note that for most platforms, this is not the most
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Algorithm 5 RTEexpand(Srte, D)
Input: Srte

arrayrte ←RejectSample(Srte||D, 3rn)

arrayr ←subarray(arrayrte, 0, rn)

arrayt ←subarray(arrayrte, rn, 2rn)

arraye ←subarray(arrayrte, 2rn, 3rn)

r← [[0|i = 1 . . . n]|i = 1 . . . r]

t← [[0|i = 1 . . . n]|i = 1 . . . r]

e← [[0|i = 1 . . . n]|i = 1 . . . r]

for 0 6 i < rn; i← i+ n do

r[i]← subarray(arrayr, i, i+ n)

t[i]← subarray(arrayt, i, i+ n)

e[i]← subarray(arraye, i, i+ n)

end for

Output: r, t, e

efficient way to generate the quadratic terms [16], but it provides a reasonably straight-

forward method that has decent average performance. Adhering to the same order is crucial

for implementations to be compatible, as this determines which elements of the system

parameter coincide with which terms.

In order to somewhat accommodate platforms that have combined multiplication and

addition instructions, (e.g. the vpmaddubs instruction on AVX2), we process pairs of

quadratic terms rather than individual coefficients. This format is chosen to still be con-

venient to handle on platforms that cannot combine multiplications and additions. In par-

ticular, platforms with more traditional SIMD instructions can use unpack instructions to

de-interleave the vectors.

We describe the process in pseudo-code below, see Algorithm 6. Note that this includes

multiplication with elements in F over F31.

Algorithm 6 EvaluateF(u,F)
Input: u,F

terms← [ ]

for 0 6 i < n do

for 0 6 j < i do

append(terms,u[i] · u[j] mod 31)

end for

end for

r← [0|j = 0..n− 1]

for 0 6 i < n; i← i+ 2 do

for 0 6 j < n do

r[j]← r[j] + u[i] · F[i · n+ 2 · j] mod 31

r[j]← r[j] + u[i+ 1] · F[i · n+ 2 · j + 1] mod 31

end for

end for

for 0 6 i < n·(n+1)
2

; i← i+ 2 do

for 0 6 j < n do

r[j]← r[j] + terms[i] · F[n ·m+ i ·m+ 2 · j] mod 31

r[j]← r[j] + terms[i+ 1] · F[n ·m+ i ·m+ 2 · j + 1] mod 31

end for

end for

Output: r = F(u)
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To evaluate the polar form function G, we use almost the same procedure. For com-

pleteness, we list it in Algorithm 7. Notably, the differences are limited to a different term

generation, and skipping of the square terms (as these cancel out).

Algorithm 7 EvaluateG(u,v,F)
Input: u,v,F

terms← [ ]

for 0 6 i < n do

for 0 6 j < i do

append(terms,u[i] · v[j] + u[j] · v[i] mod 31)

end for

end for

r← [0|j = 1..n]

for 0 6 i < n·(n+1)
2

; i← i+ 2 do

for 0 6 j < n do

r[j]← r[j] + terms[i] · F[n ·m+ i ·m+ 2 · j] mod 31

r[j]← r[j] + terms[i+ 1] · F[n ·m+ i ·m+ 2 · j + 1] mod 31

end for

end for

Output: r = G(u,v)

9.1.4 Packing and unpacking F31 elements

All field elements included in the signature are stored in packed representation. This

means that, when storing a vector of F31 elements, each element is expressed using five

bits, representing the element using its smallest non-negative representation as an integer.

The first byte of the byte sequence represents the first five bits of the first element, and

the three least-significant bits of the next element. The next byte contains the remaining

two high bits of the second element, the complete third element, and the least-significant

bit of the forth element, etc. Note that for all parameters of MQDSS, we have restricted

the value of n to be a multiple of 8. Thus, there is no need to explicitly specify padding,

since this will result in byte arrays of exact multiples of eight bits. A vector of elements in

F31 is unpacked by applying the inverse of the above operation (see Algorithms 8 and 9).

Algorithm 8 PackArray31(u)
Input: u

bitstring ← [ ]

for 0 6 i < len(u) do

bitstring ← bitstring||trunc(u[i],5)

end for

bytearray ← [ ]

for 0 6 i <len(bitstring); i← i+ 8 do

append(bytearray,subarray(bitstring, i, i+ 8))

end for

Output: bytearray

9.1.5 Commitment and hash functions

The commitments Com0 and Com1 and the Hash functions H, H1 and H2 are instantiated

also using SHAKE256. They take as input arrays of F31 elements that need to be in packed
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Algorithm 9 UnpackArray31(bytearray)
Input: bytearray

bitstring ← [ ]

for 0 6 i < len(bytearray) do

bitstring ← bitstring||bytearray[i]

end for

u← [ ]

for 0 6 i <len(bitstring); i← i+ 5 do

append(u,subarray(bitstring, i, i+ 5)||000)

end for

Output: u

form. The input to the commitment functions Com0 and Com1 is a sequence of three,

respectively two packed byte arrays. These are simply concatenated bytewise, starting

with the vector listed first. The same applies for the hash functions H, H1 and H2. Their

algorithmic description is given in Algorithms 10-14.

It should come as no surprise that the same rejection sampling method is applied to

sample the challenges α(i) ∈ F31. After absorbing the transcript into the SHAKE state, it

is repeatedly squeezed until sufficient elements have been extracted – as before, the least

significant 5 bits are considered as an unsigned integer, and is rejected if it is equal to 31.

The binary challenges are obtained by enumerating the bits of the hash output per

byte, from least to most significant. (see Algorithm 14.)

Algorithm 10 Com0(r, t, e)
Input: r, t, e

c0 ← [ ]

seed← (PackArray31(r)||PackArray31(t)||PackArray31(e))

state← SHAKE256absorb(seed)

block ← SHAKE256squeeze(state)

c0 ← subarray(block, 0, k/8)

Output: c0

Algorithm 11 Com1(r, e)
Input: r, e

c1 ← [ ]

seed← (PackArray31(r)||PackArray31(e))

state← SHAKE256absorb(seed)

block ← SHAKE256squeeze(state)

c1 ← subarray(block, 0, k/8)

Output: c1

Algorithm 12 Hash(bytearray)
Input: bytearray

state← SHAKE256absorb(bytearray)

block ← SHAKE256squeeze(state)

digest← subarray(block, 0, k/8)

Output: digest
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Algorithm 13 Hash1(D,σ0)
Input: D,σ0

seed← D||σ0

ch1 ←RejectSample[seed, r]

Output: ch1

Algorithm 14 Hash2(D,σ0, ch1, σ1)
Input: D,σ0, ch1, σ1

seed← D||σ0PackArray31(ch1)||σ1

state← SHAKE256absorb(seed)

block ← SHAKE256squeeze(state)

ch2 ←[ ]

for 0 6 i < r do

temp = block[floor(i/8)]

append(ch2, temp[i mod 8])

end for

Output: ch2

9.2 Putting it all together - Pseudo code of KGen,Sign,Vf

Using the defined auxiliary functions from the previous section, we can provide a low

level algorithmic description of the defining algorithms of MQDSS - KGen,Sign,Vf (see

Chapter 7).

For the KGen algorithm of MQDSS, we assume the existence of a function rand() that

on input k ∈ N outputs k/8 bytes of strong randomness. It is given in Algorithm 15.

Algorithm 15 KGen(k)

Input: k

sk←rand(k)

SF, Ss, Srte ← SecretKeyExpansion(sk)

F←MQ system(SF)

s←SecretVector(Ss)

v←EvaluateF(s,F)

pk← SF||PackArray31(v)

Output: (pk, sk)

An MQDSS signature is generated with the algorithm Sign (see Algorithm 16). It takes

as input a secret key sk and a message to be signed M .

An MQDSS signature is verified using the algorithm Vf (see Algorithm 17). It takes as

input a public key sk, a message M , and a signature σ.
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Algorithm 16 Sign(sk,M)

Input: sk,M

SF, Ss, Srte ← SecretKeyExpansion(sk)

F←MQ system(SF)

s←SecretVector(Ss)

v←EvaluateF(s,F)

pk← SF||PackArray31(v)

R←Hash(sk||M)

D ←Hash(pk||R||M)

r0, t0, e0 ← RTEexpand(Srte, D)

r1 ← [[0|i = 1 . . . n]|i = 1 . . . r]

t1 ← [[0|i = 1 . . . n]|i = 1 . . . r]

e1 ← [[0|i = 1 . . . n]|i = 1 . . . r]

c0 ← [[0|i = 1 . . . k/8]|i = 1 . . . r]

c1 ← [[0|i = 1 . . . k/8]|i = 1 . . . r]

com← [ ]

for 0 6 i < r do

r1[i]← s− r0[i]

c0[i]←Com0(r0[i], t0[i], e0[i])

c1[i]←Com1(r1[i],EvaluateG(t0[i], r1[i],F) + e0[i])

com← com||PackArray31(c0[i])||PackArray31(c1[i])

end for

σ0 ←Hash(com)

ch1 ←Hash1(D,σ0)

σ1 ← [ ]

for 0 6 i < r do

t1[i]← ch1[i] · r0[i]− t0[i]

e1[i]← ch1[i]·EvaluateF(r0[i],F)−e0[i]

σ1 ← σ1||PackArray31(t1[i])||PackArray31(e1[i])

end for

ch2 ←Hash2(D,σ0, ch1, σ1)

σ2 ← [ ]

for 0 6 i < r do

if ch2[i] == 0 then

σ2 ← σ2||PackArray31(r0[i])

else

σ2 ← σ2||PackArray31(r1[i])

end if

end for

for 0 6 i < r do

if ch2[i] == 0 then

σ2 ← σ2||c1[i]

else

σ2 ← σ2||c0[i]

end if

end for

Output: σ = R||σ0||σ1||σ2
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Algorithm 17 Vf(pk, σ,M)

Input: pk, σ,M

R←subarray(σ, 0, k/8)

σ0 ←subarray(σ, k/8, 2 · k/8)

σ1 ←subarray(σ, 2 · k/8, (2 · k + 10 · n · r)/8)

σ2 ←subarray(σ, (2 · k + 10 · n · r)/8, len(σ))

SF ←subarray(pk, 0, k/8)

F←MQ system(SF)

D ←Hash(pk||R||M)

ch1 ←Hash1(D,σ0)

ch2 ←Hash2(D,σ0, ch1, σ1)

resp1 ←UnpackArray31(σ1)

resp2 ←UnpackArray31(subarray(σ2, 0, 5 · n · r/8))

c←subarray(σ2, 5 · n · r/8, len(σ2))

com← [ ]

for 0 6 i < r do

t1 ← resp1[2i]

e1 ← resp1[2i+ 1]

if ch2[i] == 0 then

r0 ← resp2[i]

c0 ←Com0(r0, ch1[i] · r0 − t1, ch1[i]·EvaluateF(r0,F)− e1)

c1 ←subarray(c, i · k/8, (i+ 1) · k/8)

else

r1 ← resp2[i]

c1 ←Com1(r1, ch1[i] · (v−EvaluateF(r1,F))−EvaluateG(t1, r1,F)− e1)

c0 ←subarray(c, i · k/8, (i+ 1) · k/8)

com← com||c0||c1
end if

end for

σ′0 ←Hash(com)

Output: σ′0 == σ0
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10

Security of MQDSS

10.1 EU-CMA security of MQDSS

The security of MQDSS was proven in [16]. The security reduction is in the random oracle

model and builds on the results obtained for q2 signature schemes (see Appendix A,

Section A.1). For completeness we provide the full proof in Appendix A, Section A.2.

Theorem 10.1. MQDSS is EU-CMA-secure in the random oracle model, if the following

conditions are satisfied:

• the search version of the MQ problem is intractable in the average case,

• the hash functions H, H1, and H2 are modeled as random oracles,

• the commitment functions Com0 and Com1 are computationally binding, computation-

ally hiding, and have O(k) bits of output entropy,

• the function XOFF is modeled as random oracle and

• the pseudorandom generators PRGsk, PRGs and PRGrte have outputs computationally

indistinguishable from random for any polynomial time adversary.

10.2 Attacks Against MQDSS

Having shown the EU-CMA security of MQDSS, the best attacks against the cryptosystem

are against the conditions that provide the security. Thus, an adversary could:

• Attack the MQ problem,

• Attack the computationally binding property of the commitments

• Attack the computationally hiding property of the commitments

• Attack the hash functions

• Attack the pseudo-random generators

Since the commitment functions, the hash functions and the pseudo-random generators

are all instantiated using SHAKE256, all the attacks apart from the first boil down to

attacking SHAKE256.

One could compromise the security of MQDSS if one breaks the preimage resistance

(this will break the hiding property of the commitments), the collision resistance (this will

break the binding property of the commitments) or if one finds properties that distinguish

the output of SHAKE256 from random. A substantial amount of research has been devoted

to the security of SHAKE and the SHA3 standard. The public scrutiny gives confidence



in its security, however the details are out of the scope of this document. We refer the

interested reader to [45, 11].

This leaves attacks against the MQ problem as the point of interest. Since the public

key is randomly generated (from a random seed by expanding the seed), the obtained

system can be considered as semiregular, i.e. we can be confident that there are no hid-

den structural weaknesses. This means that the generic algebraic methods are the best

algorithms against the MQ instance in MQDSS and therefore against the system. For

details see 2. Based on these conclusions, the security of the proposed parameter sets can

be estimated as in Table 8.2. Additional parameters security estimate is given in Table 8.4,

and scaled-down parameters estimate in Table 13.3.
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11

Design Rationale

In this chapter we discuss all relevant design choices that we made and provide appropriate

justification for these choices.

11.1 Parameters

In choosing appropriate parameters for MQDSS, the most important criteria was of course

the level of security these parameters provide. In the previous chapters we provided a

complete security analysis of MQDSS. We

• proved the security of MQDSS in the random oracle model (cf. Section 10.1),

• analyzed the practical security of the MQ problem by investigating the state of the

art classical and quantum algorithms for solving it (c.f. Section 2.2 and Section 2.3),

and

• used known results about the security of the extendable output function SHAKE256,

which we used to instantiate the commitments, the pseudo-random generators and

hash functions.

Since our security reduction in the ROM is very loose, we found it impractical to use con-

crete expressions from the reduction in our choice of parameters. Instead, the parameters

are based on the best known attacks against the MQ problem and against SHAKE256.

In particular,

• We choose the number of variables and equations in F to be the same i.e m = n, as

this gives effectively the hardest instances of the MQ problem.

• Using the analysis from Section 2.2, we estimate the lower bound of the number of

variables n′ in order for the resulting MQ instance to satisfy a particular security

level/category (as defined in [46]) in terms of classical field operations of the best

classical attacks,

• Using the analysis from Section 2.3, we estimate the lower bound of the number of

variables n′′ in order for the resulting MQ instance to satisfy a particular security

level/category (as defined in [46]) in terms of quantum circuit size and depth of the

best quantum attacks,

• The number of variables n is then chosen as n = max{n′, n′′}.
• We choose the parameter k such that the output of the hash functions H, H1, H2 is

large enough to satisfy collision resistance security of the level specified by Categories

2,4 and 6.



• Finally, the number of rounds r is chosen such that the parallel composition of r rounds

of the SSH 5-pass IDS has soundness error < 1/2k.

11.2 5-pass over 3-pass SSH Identification Scheme

In [41], Sakumoto, Shirai and Hiwatari propose also a 3-pass scheme whose security also

provably relies on the MQ problem and is defined solely over F2. One could argue that

this one is a much more natural choice. Indeed, it is a 3-pass scheme, so one can directly

apply the Fiat-Shamir transform that has been scrutinized for decades by the community.

In addition it is defined over the Boolean domain, so implementation is particularly easy.

However, a careful analysis shows that it has a serious drawback, that make it clearly

inferior compared to the 5-pass SSH Identification scheme.

The 3-pass SSH scheme has a soundness error of 2/3 which is greater than q+1
2q (the 5-

pass SSH soundness error) for any q > 2. Thus for example, in order to satisfy Categories

1-2, the number of rounds would have to be 438, which is much larger than 269 - the

number of rounds in MQDSS-31-48 (Security categories 1-2). Now, for Categories 1-2, the

number of variables in the MQ system needs to be at least n = 160, which amounts to

a signature of size 2k + r(3n + k) = 40360 bytes (see [16] for derivation of this formula)

which is more than 7 KB larger than MQDSS-31-48. For Categories 3-4 the difference is

even larger - more than 8KB, since we now need at least r = 657 and n = 224 which gives

a signature of size 76276 bytes.

11.3 Optimizations

In the definition of MQDSS (see Chapter 7) we have used an optimization proposed already

in [41]: It is not necessary to include all 2r commitments in the transcript. Instead, we in-

clude a digest over the concatenation of all commitments σ0 = H(com(1)||com(2)|| . . . ||com(r))

and also the commitments c
(1)

1−b(1) , c
(2)

1−b(2) , . . . , c
(r)

1−b(r) that the verifier can not recompute.

This optimization saves (r−1)k bits from the final signature which is more than 8.5KB for

MQDSS-31-48 and more than 19KB for MQDSS-31-64. This modification does not cause

any problems, since we have shown (c.f.Chapter 10) that it does not disturb the security

arguments.

11.4 Other Functions

In order to instantiate the commitment functions, pseudorandom generators and extend-

able output function, we rely on SHAKE-256, as standardized in FIPS 202, the SHA-3

standard. This gives us a sufficiently large security margin that its preimage and second

preimage resistance is not relevant for the overall security level. In general, this means

that we simply concatenate the defined inputs as byte arrays, and absorb them into the

SHAKE state. Chapter 9 provides some more detail on specific usage.
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12

Performance Analysis

12.1 Performance on Intel x64-86

In order to obtain benchmarks, we evaluate our reference implementation on a machine

using the Intel x64-86 instruction set. In particular, we use a single core of a 3.5 GHz Intel

Core i7-4770K CPU. We follow the standard practice of disabling TurboBoost and hyper-

threading. The system has 32 KiB L1 instruction cache, 32 KiB L1 data cache, 256 KiB L2

cache and 8192 KiB L3 cache. Furthermore, it has 32GiB of RAM, running at 1333 MHz.

When performing the benchmarks, the system ran on Linux kernel 4.9.0-4-amd64, Debian

9 (Stretch).

We compiled the code using GCC version 6.3.0-18, with the compiler optimization

flag -O3. The median resulting cycle counts are listed in the table below.

keygen signing verification

MQDSS-31-48 1 206 730 52 466 398 38 686 506

MQDSS-31-64 2 806 750 169 298 364 123 239 874

12.2 Performance on Intel x64-86 AVX2

Since the evaluation of the MQ function is the most costly part of the computation but also

benefits greatly from parallelism, we thought it useful to also provide benchmarks when

the scheme is implemented using AVX2 instructions. We used the same system described

above to obtain the following measurements, this time including the -mavx2 compiler flag.

keygen signing verification

MQDSS-31-48 1 069 536 6 369 484 3 951 838

MQDSS-31-64 2 485 394 14 584 882 9 619 442

12.3 Size

As the private key is merely a seed that is used to generate the required secret material,

this is 32 respectively 48 bytes for the given parameter sets. The public key contains a

public seed, but also F(s), making it 62 and 88 bytes respectively.

The stack space consumption is largely determined by the size of the signature and the

expanded version of F. A straight-forward implementation constructs the transcript in



memory before evaluating the hash function that determines the challenges. More memory-

conservative implementations could keep an intermediate hash function state, instead, and

stream through the transcript as it is constructed.

The expanded version of F requires some active memory. Naively, it benefits from hav-

ing 57 KiB or 100 KiB (for the different parameter sets, respectively) of active memory

available. More memory-constrained implementations could reschedule the different com-

putations in a way that F only needs to be parsed once, however, and can thus also make

use of a streaming API.

For the given parameter sets, the signature size is respectively 32882 and 67800 bytes

(i.e. 32.1 KiB and 66.21 KiB). Since the signature primarily consists of transcripts of rounds

of the non-interactive identification protocol, it scales linearly in the number of rounds and

in the size of the vectors (see Chapter 5 for more details on this).
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13

Security v.s. Performance

MQQDSS depends on four parameters q, k, n, r. The first parameter q determines the un-

derlying field, and changing it has mostly to do with performance, since all the arithmetic

operations are performed using different types of instructions which may influence speed

for example. In some cases, the choice of q may introduce different dedicated attacks for

the particular field, as in the case of q = 2, which may have slightly better performance

(see Chapter 2 for detailed analysis of the known algorithms against the MQ problem).

For a fixed value of q by increasing or decreasing the parameters k and n we increase or

decrease the resistance of the system against known attacks. Note that we have specified

earlier r =
⌈
k/ log2

2q
q+1

⌉
but it is possible (if one wants) to independently tune this pa-

rameter (for example to increase the performance). We will not consider this possibility

in this document, and assume that r is not an independent parameter.

Based on the NIST call document [46], in a similar fashion to the 6 provided security

categories, we identify 4 down-scaled categories

• BLOKCIPHER64 (Category 0.1) - the security level of a generic block cipher with 64

bit key.

• HASHFUNCTION128 (Category 0.2) - the security level of a generic hash function

with 128 bit output.

• BLOKCIPHER96 (Category 0.3) - the security level of a generic block cipher with 96

bit key.

• HASHFUNCTION192 (Category 0.4) - the security level of a generic hash function

with 192 bit output.

Our estimate of the concrete security level these provide in terms of classical and

quantum gates, assuming black box treatment of the primitives (i.e. the best attacks are

the generic ones) is given in Table 13.1.

Security category
Classical

Gates

Quantum

Gates

Quantum

circuit depth

0.1 BLOKCIPHER64 274 250 246

0.2 HASHFUNCTION128 277

0.3 BLOKCIPHER96 2108 266 262

0.4 HASHFUNCTION192 2110

Table 13.1: Basic characteristics of the scalled down parameter sets



We identify the following parameter sets that satisfy the scaled down security categories

0.1-0.4.

Security

category
k q n r

Public key

size (bytes)

Secret key

size (bytes)

Signature

size (bytes)

0.1-0.2 128 4 48 189 28 16 9860

0.1-0.2 128 16 32 141 32 16 9056

0.1-0.2 128 31 24 135 31 16 8267

0.1-0.2 128 32 24 134 31 16 8206

0.1-0.2 128 64 24 131 34 16 9202

0.3-0.4 192 4 64 284 40 24 20496

0.3-0.4 192 16 40 211 44 24 17772

0.3-0.4 192 31 40 202 49 24 20046

0.3-0.4 192 32 40 201 49 24 19947

0.3-0.4 192 64 32 197 48 24 18960

Table 13.2: Basic characteristics of the scalled down parameter sets

Security

category

Best classical attack Best quantum attack

q n algorithm Field op. algorithm Gates Depth

0.1-0.2 4 48 Crossbread 279 Crossbread 257 248

0.1-0.2 16 32 Crossbread 282 Crossbread 259 251

0.1-0.2 31 24 Crossbread 277 Crossbread 259 250

0.1-0.2 32 24 Crossbread 278 Crossbread 253 245

0.1-0.2 64 24 Crossbread 290 Crossbread 260 252

0.3-0.4 4 64 Crossbread 2106 Crossbread 271 262

0.3-0.4 16 40 Crossbread 2106 Crossbread 272 263

0.3-0.4 31 40 Crossbread 2128 Crossbread 286 276

0.3-0.4 32 40 Crossbread 2129 Crossbread 283 273

0.3-0.4 64 32 Crossbread 2116 Crossbread 273 264

Table 13.3: Best classical and quantum attacks against the scalled down parameter sets

Since the signature size of MQDSS is the most critical performance characteristic,

it is natural to consider it over other characteristics when estimating the security vs.

performance trade-off. For better visual judgement, we have plotted this trade-off for

q = 31, which is the chosen value of our reference parameter sets (see Section 8.1).
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Fig. 13.1: Security category v.s. signature size
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Strengths and Weaknesses

For any cryptographic design, the final product is a result based on decisions made to

satisfy a certain security level, while maintaining desired properties such as performance

and usability. This trade-off necessarily introduces weaknesses, but the designers’ goal is

to preserve enough good features to make the schemes attractive.

MQDSS is not an exception. In this chapter, we summarize and discuss the strengths

and weaknesses of our proposal.

Strengths of MQDSS:

• Small keys. MQDSS has extremely small keys, comparable to contemporary schemes

such as ECDSA that provide only classical security. On the other hand, they are several

orders of magnitudes smaller than the keys of other MQ schemes.

• Provably secure MQ signature, with reduction from the MQ problem. MQDSS is the

first multivariate signature scheme that is provably secure, and whose security relies

solely on theMQ problem. The lack of security proofs throughout the history ofMQ
cryptography has made its representatives extremely prone to cryptanalysis and unfor-

tunately the whole area has obtained bad reputation because of this. We believe that

MQDSS together with the SSH schemes [41] are a step towards regaining confidence

in MQ cryptography.

• Flexible parameters. All four parameters q, n, k, r can be easily tuned to match different

security levels and platforms. Even more the number of variables is independent of the

number of rounds, so in case of improvement in algebraic attacks against the MQ
problem only the number of variable could be changed.

• Simple design. The underlying IDS uses a simple splitting technique based on the

bilinearity of the polar form. The rest is a slightly more general Fiat-Shamir transform

to turn the interactive protocol into a signature. The design does not utilize complicated

algebraic structures (possibly even mathematically poorly understood), there is no

dependence on possibly vulnerable distribution samplers, and in general there is very

little room for flawed deployment.

• Suitable for hardware implementation. Due to the flexible parameters, it is possible to

define MQDSS over fields of characteristic 2, such as F16 that are especially suitable

for hardware implementation.

• Naturally parallelizable. The computations within a round are independent of the other

rounds so it is straightforward to perform in parallel all rounds.



• Inherently constant-time. The straight-forward way of implementing the scheme is

inherently protected against timing attacks. Evaluating the MQ function can tradi-

tionally be done in ways that depend on the input, but this is typically an additional

optimization effort. Moreover, our chosen parameter set makes this unattractive on

most platforms.

Weaknesses of MQDSS:

• Large signature size. Probably the biggest weakness of MQDSS is its signature size.

Compared to traditional signature schemes the signature is at least 100 times larger.

The same is true for other multivariate schemes. However, traditional MQ schemes

have ad-hoc designs, without proof of security. Even more, in a typical usage scenario

of signatures such as PKI, what matters is actually the size of the public key plus the

signature. In such a setting MQDSS is still better, beating traditionalMQ schemes by

a factor of 2-20 depending on the scheme. On the other hand, provably secure schemes

that provide post-quantum security tend to have much larger signatures, and for the

schemes we are aware, the signatures are in the same range as MQDSS.

• Security proof in the ROM, and not in the QROM. In Section A.1 we showed in the

random oracle model that q2 -signature schemes are EU-CMA secure when the under-

lying IDS satisfies certain conditions. However, similar to the standard Fiat-Shamir

transform, our proof relies on a forking lemma, which introduces two serious problems

in the post-quantum setting (i.e. in the quantum accessible random oracle model):

rewinding of the adversary, and adaptively programming the random oracle. While it

is known how to deal with the latter [54], the former seems to be a serious obstacle

[2]. The only known way to fix the Fiat-Shamir transform in the QROM setting [23]

is using oblivious commitments, which are a certain kind of trapdoor commitments,

effectively avoiding rewinding at the cost of introducing the necessity of a trapdoor

function. This makes the solution not applicable in our setting as there are no known

trapdoor functions with a reduction from the MQ-problem.

It is however possible to use a different transform that overcomes the problems of the

forking lemma in the QROM. In [17], the authors generalize the Unruh transform [54],

and apply it to the 5-pass SSH of Sakumoto et al.. The obtained signature scheme is

secure in the ROM, but at a huge cost - the signature size becomes ≈ 120KB which

in our opinion is not in the range of desired practicality.

• Security proof not tight. Another weakness of our security proof is that is not at all

tight. This is again an inherent weakness introduced by the rewinding technique of the

forking lemma. Therefore, in order to produce a tight security reduction for MQDSS

one would have to base the proof on different techniques. At the moment, we are not

aware of such techniques that we could use.
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Additional AVX2 Implementation of MQDSS

To demonstrate performance, we have also implemented the scheme using AVX2 vec-

tor instructions. As mentioned above, this makes convenient use of the structure of the

terms, allowing implementations to benefit from the vpmaddubs instruction to combine

two multiplications with an addition. In one instruction, this computes two 8 bit SIMD

multiplications and a 16 bit SIMD addition. This also underlines the benefit of details such

as elements in F in signed representation, since this allows accumulating more additions

in vectorized 16-bit words before performing a reduction.

When arranging reductions, we must strike a careful balance between preventing over-

flow and not reducing more often than necessary. As we make extensive use of vpmaddubsw,

which takes both a signed and an unsigned operand to compute the quadratic monomials,

we ensure that the input variables for theMQ function are unsigned values (in particular:

{0, . . . , 31}). For the coefficients in the system parameter F, we can then freely assume the

values are in {−15, . . . , 15}, as these are the direct result of a pseudo-random generator.

It turns out to be efficient to immediately reduce the quadratic monomials back to

{0, . . . , 31} when they are computed. When we now multiply such a product with an

element from the system parameter and add it to the accumulators, the maximum value

of each accumulator word will be at most1 64 · 31 · 15 = 29760. As this does not exceed

the maximum value of 32768, we only have to perform reductions on each individual

accumulator at the very end.

For the smaller parameter set, i.e. n = 48, these constraints are less pressing, but the

maximum value accumulators remains in the same ballpark. Both n = 48 and n = 64

benefit from the fact that these parameters are multiples of 16, which results in a very

similar optimal implementation strategy and convenient code reuse.

1 This follows from the fact that we combine 64 such monomials in two YMM registers.



References

1. Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From identification to signatures via the fiat-

shamir transform: Minimizing assumptions for security and forward-security. In: Knudsen, L.R. (ed.)

Advances in Cryptology — EUROCRYPT 2002: International Conference on the Theory and Appli-

cations of Cryptographic Techniques Amsterdam, The Netherlands, April 28 – May 2, 2002 Proceed-

ings. pp. 418–433. Springer Berlin Heidelberg, Berlin, Heidelberg (2002), https://doi.org/10.1007/

3-540-46035-7_28

2. Ambainis, A., Rosmanis, A., Unruh, D.: Quantum attacks on classical proof systems: The hardness of

quantum rewinding. In: FOCS 2014. pp. 474–483 (2014), http://eprint.iacr.org/2014/296
3. Amy, M., Maslov, D., Mosca, M.: Polynomial-time t-depth optimization of clifford+t circuits via

matroid partitioning. IEEE Trans. on CAD of Integrated Circuits and Systems 33(10), 1476–1489

(2014), https://doi.org/10.1109/TCAD.2014.2341953
4. Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm for fast synthesis

of depth-optimal quantum circuits. IEEE Trans. on CAD of Integrated Circuits and Systems 32(6),

818–830 (2013), https://doi.org/10.1109/TCAD.2013.2244643
5. Bardet, M., Faugère, J., Salvy, B.: On the complexity of the F5 Gröbner basis algorithm. Journal of
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Applied Algebra 139, 61–88 (1999), http://www-polsys.lip6.fr/~jcf/Papers/F99a.pdf
27. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without reduction to zero (F5).
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A

Security proofs

A.1 Security of q2-signature schemes.

For completeness of this document, we provide in full the security reduction for Construc-

tion 5.1 in the random oracle model, and the proof of EU-CMA security of the obtained

signature scheme.

To prove this claim, we proceed in several steps. The proof builds on techniques in-

troduced by Pointcheval and Stern [49] (see Section 4.2 for a brief description of the

technique). As the reduction is far from being tight, we refrain from doing an exact proof

as it does not gain us anything but a complicated statement. We first recall an important

tool from [49] called the splitting lemma.

Lemma A.1 (Splitting lemma [49]). Let A ⊂ X × Y , such that

Pr[A(x, y)] > ε. Then, there exists Ω ⊂ X, such that

Pr[x ∈ Ω] > ε/2,

Pr[A(a, y)|a ∈ Ω] > ε/2.

We next present a forking lemma for q2-signature schemes. The lemma shows that

we can obtain four valid signatures which contain four valid transcripts of the underlying

IDS, given a successful key-only adversary. Moreover, these four transcripts fulfill a certain

requirement on the challenges (here the related parts of the hash function outputs) that

we need later.

In the lemma and in the rest of the chapter, we model the functions H1 and H2 as

independent random oracles O1 and O2. Furthermore, for ease of exposition in our proofs,

we use a “full” version of a signature, including the outputs h1 and h2 of H1 and H2, i.e.,

instead of σ = (σ0, σ1, σ2), we assume a signature has the form σ = (σ0, h1, σ1, h2, σ2).

(Note that h1 and h2 need not be included in the signatures because they can be easily

reconstructed from the other values.)

Lemma A.2 (Forking lemma for q2-signature schemes). Let Dss(1k) be a q2-

signature scheme with security parameter k ∈ N. If there exists a PPT adversary A that

can output a valid signature message pair (M,σ) with non-negligible success probability,

given only the public key as input, then, with non-negligible probability, rewinding A a

polynomial number of times with the same random tape but different oracles, outputs 4

valid message signature pairs (M,σ = (σ0, h1, σ1, h2, σ2)), (M,σ′ = (σ0, h
′
1, σ
′
1, h
′
2, σ
′
2)),



(M,σ′′ = (σ0, h
′′
1, σ
′′
1 , h
′′
2, σ
′′
2)), (M,σ′′′ = (σ0, h

′′′
1 , σ

′′′
1 , h

′′′
2 , σ

′′′
2 )), such that there exists

j ∈ {1, . . . , r} such that:

(ch1)
(j) = (ch′1)

(j) 6= (ch′′1)(j) = (ch′′′1 )(j),

(ch2)
(j) = (ch′′2)(j) 6= (ch′2)

(j) = (ch′′′2 )(j),
(A.1)

where h1 = (ch
(1)
1 , ch

(2)
1 , . . . , ch

(r)
1 ) and h2 = (ch

(1)
2 , ch

(2)
2 , . . . , ch

(r)
2 ) and similarly for

h′1, h
′′
1, h
′′′
1 and h′2, h

′′
2, h
′′′
2 .

Proof. To prove the Lemma we need to show that we can rewind A three times (and

adaptability program the random oracles) and at the same time, the probability that A
succeeds in forging a (different) signature in all four runs is non-negligible. Moreover, we

have to show that the signatures have the additional property claimed in the Lemma,

again with non-negligible probability.

Let ω ∈ Rw be A’s random tape with Rw the set of allowable random tapes. During

the attack A may ask polynomially many queries (in the security parameter k) Q1(k) and

Q2(k) to the random oracles O1 and O2. Let q1,1, q1,2, . . . , q1,Q1 and q2,1, q2,2, . . . , q2,Q2

be the queries to O1 and O2, respectively. Moreover, let (r1,1, r1,2, . . . , r1,Q1) ∈ (Cr1)
Q1 and

(r2,1, r2,2, . . . , r2,Q2) ∈ (Cr2)
Q2 the corresponding answers of the oracles.

Denote by F the event that A outputs a valid message signature pair (M,σ =

(σ0, h1, σ1, h2, σ2)). Per assumption, this event occurs with non-negligible probability, i.e.,

Pr[F] = 1
P (k) , for some polynomial P (k). In addition, F implies h1 = O1(M,σ0) and

h2 = O2(M,σ0, h1, σ1). As h1, h2 are chosen uniformly at random from exponentially

large sets Cr1,C
r
2, the probability that A did not query O1 with (M,σ0) and O2 with

(M,σ0, h1, σ1) is negligible. Hence, there exists a polynomial P ′ such that the event F′

that F occurs and A queried O1 with (M,σ0) and O2 with (M,σ0, h1, σ1) has probability

Pr[F′] =
1

P ′(k)
.

For the moment consider only the second oracle. From the previous equation, there

exists at least one β 6 Q2 such that

Pr[F′ ∧ q2,β = (M,σ0, h1, σ1)] >
1

Q2(k)P ′(k)

where the probability is taken over the random coins of A and all answers from O2, i.e. over

the set B = {(ω, r2,1, r2,2, . . . , r2,Q2)|ω ∈ Rw ∧ (r2,1, r2,2, . . . , r2,Q2) ∈ (Cr2)
Q2 ∧ F′ ∧ q2,β =

(M,σ0, h1, σ1)}.
(Informally, the following steps just show that the success of an algorithm with non-

negligible success probability cannot be conditioned on an event that occurs only with

negligible probability (i.e. the outcome of the q2,β query landing in some negligible subset).)

The last equation implies that there exists a non-negligible set of “good” random tapes

Ωβ ⊆ Rω for which A can provide a valid signature and q2,β is the oracle query determining

h2. Applying the splitting lemma, we get that

Pr[w ∈ Ωβ] >
1

2Q2(k)P ′(k)

Pr[(ω, r2,1, r2,2, . . . , r2,Q2) ∈ B|w ∈ Ωβ] >
1

2Q2(k)P ′(k)

Applying the same reasoning again we can derive from the later probability being non-

negligible that there exists a non-negligible subset Ωβ,ω of the “good” oracle responses
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(r2,1, r2,2, . . . , r2,β−1) such that (ω, r2,1, r2,2, . . . , r2,Q2) ∈ B. Applying the splitting lemma

again, we get

Pr[(r2,1, . . . , r2,β−1) ∈ Ωβ,ω] >
1

4Q2(k)P ′(k)

Pr[(ω, r2,1, . . . , r2,Q2) ∈ B|(r2,1, . . . , r2,β−1) ∈ Ωβ,ω)] >
1

4Q2(k)P ′(k)

This means that rewinding A to the point where it made query q2,β and running it with

new, random r′2,β, . . . , r
′
2,Q2

has a non-negligible probability of A outputting another valid

signature. Therefore, we can use A to find with non-negligible probability two valid mes-

sage signature pairs (M,σ = (σ0, h1, σ1, h2, σ2)), (M,σ′ = (σ0, h
′
1, σ
′
1, h
′
2, σ
′
2)), such that

(σ0, h1, σ1) = (σ0, h
′
1, σ
′
1). and h2 6= h′2.

We now rewind the adversary again using exactly the same technique as above but now

considering the queries to O1 and its responses. In the replay we change the responses of

O1 to obtain a third signature that differs from the previously obtained ones in the first

associated hash value. In the same manner, it can be shown that with non-negligible

probability A will output a third signature on M , σ′′ = (σ0, h
′′
1, σ
′′
1 , h
′′
2, σ
′′
2), such that

h′′1 6= h′1 = h1.

Finally, we rewind the adversary a third time, keeping the responses of O1 from the last

rewind and focusing on O2 again. Again, with non-negligible probability A will produce yet

another signature on M , σ′′′ = (σ0, h
′′′
1 , σ

′′′
1 , h

′′′
2 , σ

′′′
2 ) such that (σ0, h

′′
1, σ
′′
1) = (σ0, h

′′′
1 , σ

′′′
1 )

and h′′2 6= h′′′2 .

Summing up , rewinding the adversary three times, we can find four valid signatures

σ, σ′, σ′′, σ′′′ with non-negligible success probability
1

P (k)
for some polynomial P (k). Let

us denote this event by Eσ. So we have that

Pr[Eσ] >
1

P (k)
.

What remains is to show that the obtained signatures satisfy the particular structure from

the lemma (Equation A.1) with non-negligible probability.

Let H be the event that for (σ, σ′, σ′′.σ′′′) there exists a j ∈ {1, . . . , r} such that (A.1)

is satisfied. For the probability that A outputs a valid signature with this property, we

have that

Pr[Eσ ∧H] = Pr[Eσ]− Pr[¬H ∧ Eσ] >
1

P (k)
− Pr[¬H ∧ Eσ]

Now, let σ, σ′, σ′′, σ′′′ be the four valid signatures that A outputs under the event

¬H ∧ Eσ. This means that (A.1) is not satisfied for σ, σ′, σ′′, σ′′′ for any j ∈ {1, . . . , r}.
Consider the set S¬H of all tuples (h1, h

′′
1, h2, h

′
2, h
′′
2, h
′′′
2 ) ∈ (Cr1)

2 × (Cr2)
4 where h1 =

(ch
(1)
1 , ch

(2)
1 , . . . , ch

(r)
1 ) ∈ Cr1, (similarly for h′1), and h2 = (ch

(1)
2 , ch

(2)
2 , . . . , ch

(r)
2 ) ∈ Cr2,

(similarly for h′2, h
′′
2, h
′′′
2 ), and such that for every j ∈ {1, . . . , r} at least one of the following

is true:

i.(ch1)
(j) = (ch′1)

(j); ii.(ch2)
(j) = (ch′2)

(j); iii.(ch′′2)(j) = (ch′′′2 )(j).

It is clear that the hash value tuple (h1, h
′′
1, h2, h

′
2, h
′′
2, h
′′′
2 ) in A’s output under the event

¬H ∧ Eσ must be in S¬H. Indeed if the hash value tuple does not come from S¬H, then

there exists a j ∈ {1, . . . , r}, such that none of i., ii., iii., holds true, i.e., for this j
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(ch1)
(j) 6= (ch′1)

(j) ∧ (ch2)
(j) 6= (ch′2)

(j) ∧ (ch′′2)(j) 6= (ch′′′2 )(j).

A little thought reveals that the last is equivalent to (A.1), which is a contradiction to the

assumption that the tuple comes under the event ¬H ∧ Eσ.

Recall that for q2 -signatures, C1 has size q and C2 size 2. Now, the cardinality of S¬H
can be calculated to be |S¬H| = (4q(3q + 1))r, whereas the cardinality of (Cr1)

2 × (Cr2)
4 is

(16q2)r. This means that

Pr[¬H ∧ Eσ] 6
(4q(3q + 1))r

(16q2)r
=

(
3q + 1

4q

)r
,

which is negligible in k since according to Construction 5.1, the number of rounds r must

be super-logarithmic (in k), to fulfill Cr2 being exponentially large (in k).

Finally,

Pr[Eσ ∧H] = Pr[Eσ]− Pr[¬H ∧ Eσ] >
1

P (k)
−
(

3q + 1

4q

)r
=

1

P (k)
− negl(k)

and hence, the conditions from the lemma are satisfied with non-negligible probability. ut

With Lemma A.2 we can already establish unforgeability under key only attacks:

Theorem A.3 (KOA security of q2-signature schemes). Let k ∈ N, IDS(1k) a q2-

IDS that has a key relation R, is KOW secure, and has a q2-extractor. Then q2 -Dss(1k),

the q2-signature scheme derived applying Construction 5.1 is unforgeable under key-only

attacks.

Proof. Let A be a PPT algorithm that forges a signature in a KOA setting, i.e., given

only the public key pk outputs a valid message-signature pair (M,σ) with non-negligible

probability ε. We show how to construct an algorithmMA that given IDS public key and

oracle access to A breaks the KOW security of IDS in essentially the same running time

as the given A and with negligibly different success probability.

On input the IDS public key pk, MA runs A(pk) which outputs a valid message-

signature pair (M,σ) for q2 -Dss. Using the technique from Lemma A.2, rewinding A,

MA obtains four valid signatures that with overwhelming probability contain four valid

transcripts that satisfy Equation (A.1). These are exactly the type of transcripts needed

for the q2-extractor to extract a valid secret key sk’. Since (pk, sk′) ∈ R, MA breaks the

KOW security of IDS. ut

For EU-CMA security, we still have to deal with signature queries. The following lemma

shows that a reduction can produce valid responses to the adversarial signature queries if

the identification scheme is honest-verifier zero-knowledge.

Lemma A.4. Let k ∈ N the security parameter, IDS(1k) a q2-IDS that is honest-verifier

zero-knowledge. Then any PPT adversary B against the EU-CMA-security of q2 -Dss(1k),

the q2-signature scheme derived by applying Construction 5.1, can be turned into a key-

only adversary A against q2 -Dss with the properties described in Lemma A.2. A runs in

polynomial time and succeeds with essentially the same success probability as B.

Proof. By construction. We show how to construct an oracle machine AB,S,O1,O2 that has

access to B, an honest-verifier zero-knowledge simulator S, and random oracles O1,O2.
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A produces a valid signature for q2 -Dss(1k) given only a public key running in time

polynomial in k and achieving essentially the same success probability (up to a negligible

difference) as B.

Upon input of public key pk, A runs BO′1,O′2,Sign(pk) simulating the random oracles

(ROs) O′1,O′2, as well as the signing oracle Sign towards B. When B outputs a forgery

(M∗, σ∗), A just forwards it.

To simulate the ROs, A keeps two initially empty tables of query-response pairs, one

per oracle. Whenever B queries O′b, A first checks if the table for O′b already contains a

pair for this query. If such a pair exists, A just returns the stored response. Otherwise, A
forwards the query to its own Ob.

As IDS is honest-verifier zero-knowledge there exists a PPT simulator S that upon input

of a IDS public key generates a valid transcript that is indistinguishable of the transcripts

generated by honest protocol executions. Whenever B queries the signature oracle with

message m, A runs S r times, to obtain r valid transcripts. A combines the transcripts to

obtain a valid signature σ = (σ0, h1, σ1, h2, σ2). Before outputting σ, A checks if the table

for O′1 already contains an entry for query (M,σ0). If so, A aborts. Otherwise, A adds

the pair ((M,σ0), h1). Then, A checks the second table for query (M,σ0, h1, σ1). Again, A
aborts if it finds such an entry and adds ((M,σ0, h1, σ1), h2), otherwise.

The probability that A aborts is negligible in k. When answering signature queries, A
verifies that certain queries were not made before. Both queries contain σ1 which takes

any given value only with negligible probability. On the other hand, the total number of

queries that B makes to all its oracles is polynomially bounded. Hence, the probability

that one of the two queries was already made before is negligible. If A does not abort,

it perfectly simulates all oracles towards B. Hence, B – and thereby A – succeeds with

the same probability as in the real EU-CMA game in this case. Hence, A succeeds with

essentially the same probability as B. ut

We now got everything we need to prove EU-CMA security. The proof is a straight

forward application of Lemma A.2 and Lemma A.4.

Theorem A.5 (EU-CMA security of q2-signature schemes). Let k ∈ N, IDS(1k)

a q2-IDS that has a key relation R, is KOW secure, is honest-verifier zero-knowledge,

and has a q2-extractor E. Then q2 -Dss(1k), the q2-signature scheme derived applying

Construction 5.1 is existentially unforgeable under adaptive chosen message attacks.

Proof. Towards a contradiction, assume that there exists a PPT adversary A against the

EU-CMA-security of q2 -Dss succeeding with non-negligible probability. We show how to

construct a PPT algorithm MA that given the IDS public key and oracle access to A
breaks the KOW security of IDS. Applying Lemma A.4, MA can construct a PPT key-

only forger B, with essentially the same success probability as A. Given a public key for

IDS (which is a valid q2 -Dss public key) MA runs B as described in Lemma A.2. That

way MA can use B to obtain four signatures that per (A.1) lead to four transcripts as

required by the q2-extractor E . Running E , MA can extract a valid secret key sk′ that

breaks the KOW security of IDS.

MA just runs B and E , two PPT algorithms. Consequently, MA runs in polynomial

time. Also, B and E both have non-negligible success probability implying that MA also

succeeds with non-negligible probability. ut

77



A.2 Proof of Theorem 10.1 [EU-CMA security of MQDSS]

Before we present the proof, note that as our results from Section A.1 are non-tight we

only prove an asymptotic statement. While this does not suffice to make any statement

about the security of a specific parameter choice, it provides evidence that the general

approach leads to a secure scheme.

To prove this theorem we would like to apply Theorem 5.2 (the same as Theorem A.5).

However, Theorem 5.2 was formulated for a slightly more generic construction (see Con-

struction 5.1). The point is that we apply an optimization originally proposed in [50].

So, in our actual proposal (see Chapter 7), the parallel composition of the IDS is slightly

different as, instead of the commitments, only the hash of their concatenation is sent (c.f.

σ0 in Figure 7.2). Also, the last message (c.f. σ2 in Figure 7.2) now contains the remaining

commitments. Let’s call this optimized version opt - q2 -Dss(1k).

Note that since MQDSS is an opt - q2 -Dss(1k) signature scheme, we could have focused

our attention solely to opt - q2 -Dss(1k) schemes already in Chapter 5. However, this would

have limited the general applicability of the result, as the above optimization is only

applicable to schemes with a certain, less generic, structure such as MQDSS.

As the next Corollary shows, it is easy to verify that the results from Chapter 5 hold

for the optimized opt - q2 -Dss(1k) scheme as well.

Corollary A.6 (EU-CMA security of q2-signature schemes). Let k ∈ N, IDS(1k) a

q2-IDS that has a key relation R, is KOW secure, is honest-verifier zero-knowledge, and

has a q2-extractor E. Then opt - q2 -Dss(1k), the optimized q2-signature scheme derived by

applying Construction 5.1 and the optimization explained above, is existentially unforgeable

under adaptive chosen message attacks.

Proof. Regarding Lemma A.2, note that by removing duplicate information from the signa-

ture, we do not affect the ability to extract in any way, and thus the probability of success of

the adversary remains exactly the same. Thus Lemma A.2 also holds for opt - q2 -Dss(1k).

For Lemma A.4, the arguments are exactly the same with the exception that the

probability of abort of A may now be different, but nevertheless, still negligible. Indeed,

the proof of Lemma A.4 uses the fact that the first signature element σ1 only takes a given

value with negligible probability. This follows from the fact that the commitment scheme

has big enough output entropy – and thereby also takes a given value with negligible

probability. In the case of opt - q2 -Dss(1k), this statement follows from the same property

of the commitment scheme but also from the randomness of the RO that we used to model

the hash functionH. Hence, the proof of Lemma A.4 also goes through for opt - q2 -Dss(1k).

Now, the rest of the proof proceeds exactly the same as in Theorem 5.2. ut

Based on this corollary we can now prove Theorem 10.1.

Proof (of Theorem 10.1). Towards a contradiction, assume there exists an adversary A
that wins the EU-CMA game against MQDSS with non-negligible success probability.

We show that this implies the existence of an oracle machine MA that solves the MQ
problem, breaks a property of one of the commitment schemes, or distinguishes the outputs

of one of the pseudorandom generators from random. We first define a series of games and

argue that the difference in success probability of A between these games is negligible. We

assume that M runs A in these games.
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Game 0: Is the EU-CMA game for MQDSS.

Game 1: Is Game 0 with the difference thatM replaces the outputs of PRGrte by random

bit strings.

Game 2: Is Game 1 with the difference thatM replaces the outputs of PRGsk and PRGs

by random bit strings.

Game 3: Is Game 2 with the difference that M takes as additional input a random equa-

tion system F.M simulates XOFF towardsA, programming XOFF such that it returns

the coefficients representing F upon input of SF and uniformly random values on any

other input.

Per assumption, A wins Game 0 with non-negligible success probability. Let’s call this

ε. If the difference in A’s success probability playing Game 0 or Game 1 was non-negligible,

we could use A to distinguish the outputs of PRGrte from random. The same argument

applies for the difference between Game 1 and Game 2, and PRGsk and PRGs. Finally, the

output distribution of XOFF in Game 3 is the same as in previous games. Hence, there is

no difference for A between Game 2 and Game 3. Accordingly, A’s success probability in

these two games is equal.

Now, Game 3 is exactly the EU-CMA game for the optimized opt - q2 signature scheme

that is derived from MQ - IDS, the 5-pass IDS from [41].

Next, recall that under the assumption of intractability of theMQ problem on average

and assuming computationally binding and computationally hiding properties of Com0

and Com1, MQ - IDS is KOW (c.f. Theorem 3.1), is HVZK (c.f. Theorem 4) and has a

q2-extractor (c.f. Theorem 7). We can now apply Corollary A.6 on MQ - IDS, and obtain

that the opt - q2 signature scheme derived from MQ - IDS is EU-CMA secure. This is a

contradiction to the assumption that A wins Game 3 with non-negligible probability. ut
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