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Abstract. A multi-message multi-recipient PKE (mmPKE) encrypts
a batch of messages, in one go, to a corresponding set of independently
chosen receiver public keys. The resulting “multi-recipient ciphertext”
can be then be reduced (by any 3rd party) to a shorter, receiver specific,
“invidual ciphertext”. Finally, to recover the i-th message in the batch
from their indvidual ciphertext the i-th receiver only needs their own
decryption key. A special case of mmPKE is multi-recipient PKE where
all receivers are sent the same message. By treating (m)mPKE and
their KEM counterparts as a stand-alone primitives we allow for more
efficient constructions than trivially composing individual PKE/KEM
instances. This is especially valuable in the post-quantum setting, where
PKE/KEM ciphertexts and public keys tend to be far larger than their
classic counterparts.
In this work we describe a collection of new results around batched KEMs
and PKE. We provide both classic and post-quantum proofs for all results.
Our results are geared towards practical constructions and applications
(for example in the domain of PQ-secure group messaging).
Concretely, our results include a new non-adaptive to adaptive compiler
for CPA-secure mKEMs resulting in public keys roughly half the size of
the previous state-of-the-art [Hashimoto et.al., CCS’21]. We also prove
their FO transform for mKEMs to be secure in the quantum random
oracle model. We provide the first mKEM combiner as well as two
mmPKE constructions. The first is an arbitrary message-length black-box
construction from an mKEM (e.g. one produced by combining a PQ
with a classic mKEM). The second is optimized for short messages and
achieves hybrid PQ/classic security more directly. When encrypting n
short messages (e.g. as in several recent mmPKE applications) at 256-
bits of security the mmPKE ciphertext are 144n bytes shorter than the
generic construction. Finally, we provide an optimized implementation of
the (CCA secure) mKEM construction based on the NIST PQC winner
Kyber and report benchmarks showing a significant speedup for batched
encapsulation and up to 79% savings in ciphertext size compared to a
naive solution.
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1 Introduction

Public Key Encryption (PKE) and Key Encapsulation Mechanisms (KEM) are
some of the most important and widely used cryptographic primitives. The advent
of quantum computers has motivated a new generation of constructions with
conjectured security against quantum adversaries. However, these come at a cost
relative to their classic counterparts, most often in the form of greatly increased
public key and ciphertext sizes.

Many Messages, Many Receivers. A useful collection of generalizations of PKE and
KEM explicitly support the batching of operations. For example, a multi-message
multi-recipient PKE (mmPKE) generalizes PKE to allow sending a vector of
messages m = (m1, . . . ,mn) to a matching vector of recipients R := (R1, . . . , Rn)
each with their own independently generated key pair (pki, ski). First introduced
in [29], an mmPKE’s encryption algorithm takes as input m and a public-
keys vector {pki} to output a single “multi-recipient ciphertext” C. To reduce
ciphertext size for a receiver Ri, C can later be converted into (presumably much
shorter) receiver specific “individual ciphertexts” ci destined for Ri. This so called
Extract operation requires and reveals no secrets and so can be performed by any
3rd party; e.g. a server relaying traffic between parties. Finally, Ri can retrieve
mi on their own by feeding their individual ciphertext ci and private key ski to
the decryption algorithm. However roughly speaking, mi should remain private
even given the full multi-recipient ciphertext and all other decryption keys.

A special case of mmPKE is multi-recipient PKE (mPKE) which requires that
all recipients are sent the same message: ∀i, j mi = mj . The KEM analogue of
mmPKE/mPKE are (multi-message) multi-recipient KEM (mmKEM/mKEM).
Rather than transmitting a predetermined vector of messages m, an mKEM
instead transmits a random symmetric key k to the recipients.

Efficiency and Applications. In principle, constructing such generalizations of
PKE/KEM is not difficult. For example, a trivial construction of an mmKEM
is to simply use a separate instance of a standard KEM for each receiver to
transmit key ki to receiver Ri. To extended this to an mKEM choose a fresh key
k and use an AEAD to encrypt k under each ki. Similarly, a trivial construction
of an mmPKE is to use a separate instance of PKE for each receiver. However,
by treating these extensions of PKE/KEM as primitives in their own right we
open the door to more efficient constructions. Already in the classic setting
the mmPKEs of [29, 9, 8, 36] reduce computation time and ciphertext size by
essentially half over the trivial construction. But it is in the post-quantum setting
where such savings take on the greatest importance as we discuss below.

Indeed, switching to extractable batched versions of KEM/PKE has played a
central role in reducing (at times, quite dramatically) the communication cost of
some recent protocols. Notably, [28] proposed several PQ mKEMs to reduce the
complexity of a (PQ version of) MLS - the upcoming Secure Group Messaging
standard of the IETF. Compared to a trivial mKEM construction from Kyber
their Kyber-based construction reduces ciphertext size by 90% (asymptotically
in the number of recipients). Meanwhile, mPKE plays a central role in the recent
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Secure Group Messaging protocol of [24]. Their Kyber-based mmPKE reduces
ciphertext size by 50%, albeit at the cost of doubling public-key sizes. A generic
mmPKE scheme is used in the recent Continuous Group Key Agreement protocol
of [3]. However, no PQ mmPKE constructions are known to date (beyond trivial
ones described above).
Security. Each of the above protocols is designed to defend against active ad-
versaries. Thus, they all require strong non-malleability properties from their
mKEM/mmPKE. While [24] requires full fledged CCA security, [3] gets away
with a relaxed variant known as replayable CCA (RCCA) security [13]. Intuitively,
CCA guarantees non-malleability of the challenge ciphertext, while RCCA “only”
guarantees that its semantics are non-malleable. More formally, RCCA ensures
that upon being given a challenge ciphertext that encrypts a message m the
adversary cannot produce a new ciphertext decrypting to a message distinct from
yet still meaningfully related to m (although, unlike for CCA, it may be possible
to produce fresh encryptions of m).

Along with non-malleability, all the above applications need mKEM/mmPKE
schemes to remain secure in the face of adaptive corruptions. In other words,
being given a set of candidate receiver public keys, the adversary may request
the secret keys of an arbitrary subset of their choosing. Security should then hold
for the remaining uncorrupted key pairs. Adaptive security is often difficult to
prove (despite the absence of any known attacks). For example, the PQ mKEM
of [28] enjoys no such security proof. To date, the only batched primitives with
provable adaptive security are the CCA secure mPKEs of [24] and mmPKE of [3].
Yet, both security proofs are in the classic setting only. There exist no batched
primitives of any type with security proof for PQ adaptive security.

Another gap in the state-of-the-art concerns hybrid security for batched
primitives. A “hybrid” security property holds if any one of multiple underlying
assumptions holds. A special case of constructions enjoying hybrid security are
combiners [25, 23]. A combiner for primitive P constructs an instance of P from
two (or more) underlying instances of P. The construction is secure if any of the
underlying primitives is secure. Hybrid security is a very useful tool for hedging
against future breaks of underlying assumptions. This is particularly pertinent for
PQ constructions as it allows us to use powerful but relatively new and untested
assumptions while still falling back to lower risk (albeit classical) assumptions
such as DDH. To date, no combiners exist for extractable batched primitives (PQ
or otherwise). In particular, KEM combiners for CCA security [22, 33, 10, 12]
generally require hashing or computing a MAC of the full ciphertext during
decapsulation. Thus, it is not immediately clear how those schemes can be
extended to an extractable batched primitive. Receivers, who only see their
individual ciphertext, no longer have the same view; let alone know the entire
multi-recipient ciphertext produced by the sender.

1.1 Our Contributions
Nominally, the goal of this work is to build hybrid PQ/classically (R)CCA
secure mmPKEs. However, we have taken a very modular approach getting there,
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resulting in a collection of constructions and theorems which are useful in the
wider context of extractable batched PKE/KEMs, especially (but not exclusively)
in the PQ setting. At the most abstract level, we first add adaptive security to
existing CPA encryption schemes. Next, we transform the result into a CCA
secure KEM using the FO transform followed by a KEM/DEM construction to
obtain CCA secure encryption. For hybrid security, we show how to combine
KEMs as well as an optimized direct construction of a hybrid CCA encryption
scheme. The challenge in all this is to make this paradigm work for the extractable
batch generalizations of PKE/KEM and to prove security against quantum (and
classic) adversaries.

Adaptive CPA Security for mKEMs. In more detail, we begin with [28] which
gives us PQ non-adaptively CPA-secure mPKE. Picking up from there, our
first contribution is a new black-box compiler converting a non-adaptively CPA
secure mPKE into an adaptively CPA secure one. Compared to the same type of
compiler (implicit) in [24], our compiled ciphertext sizes have the same size but
our public keys are about half as big as theirs.4 We remark that [24] don’t prove
their compiler secure against quantum adversaries, although their classic proof
should apply essentially unchanged in the quantum model.

To achieve this, our compiler places additional (mild) requirements on the
original mKEM (which are already satisfied by all CPA secure mKEMs that we
are aware of). First, for some arbitrary space of public keys PK the distributions
of public keys output during key generation should look uniform over PK. Second
PK should be equipped with an (efficiently computable) group operation.

We prove classic and quantum security for the compiler. For the remainder of
this section, unless stated explicitly otherwise, all security notions are implicitly
adaptive.

From CPA to (R)CCA Security for mKEMs. Next, we consider adapting the
FO transform [19, 20], which converts a CPA-secure PKE into a CCA-secure
KEM, to the multi-recipient setting. The first multi-recipient FO transform was
proposed in [28] where it is shown to be classically and quantum secure. However,
the proofs from [28] do not work with adaptive corruptions and, according to [17],
the proof of quantum security has a gap (carried over from the proof technique
by Zhandry [42]). Partially fixing these issues, the work [24] proposes a new
variant of the multi-recipient FO (the main difference is introducing explicit
rejections) with adaptive corruptions but only prove it classically secure. In this
work, we complete the above picture by proving quantum security for the FO
transform from [24]. Our proof uses the framework of [17], thus avoiding the
issue in the proof from [28]. We note that applying the framework of [17] to the
multi-recipient setting is technically non-trivial. For example, in order to use it,
we define a new notion of spreadness for mPKEs.

4 We note that all applications of mKEM/mmPKE mentioned above require sending
fresh public keys as part of every protocol packet [24]. In fact, [28, 3] both require
multiple new keys per packet.
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mKEM Combiner. We introduce the first mKEM combiner. It is extremely
simple, essentially running the two input mKEM instances in parallel. If the first
decapsulates to a key k1 and the second to k2 then the key for the combined
scheme is simply k := F (k1, k2).

We model F as a dual PRF and show two incomparable results for the
construction. First, if at least one of the two schemes is RCCA-secure than so is
the combined scheme (which suffices for the application in [3] for example).

Second, we define a notion of collision resistance (CR) for an mKEM and show
that if one mKEM is CCA-secure and the other is CR than the combined scheme
is also CCA-secure. In particular, we also show that an mKEM built using our FO
scheme using a hash function H is itself CR in any model in which H is collision
resistant. We also present a variant of standard Diffie-Hellman based mKEM
which we can also show to be CR (against both classic and quantum adversaries).
For this we need the underlying hash function to be collision resistant as well
as the encryption function of the underlying DEM. Note that any deterministic
DEM can be augmented to have this property by restricting the decryption
algorithm to only output the plaintext if re-encrypting it produces the original
ciphertext. We prove both classic and quantum versions of these results.

mmPKE. We present two new mmPKE constructions. The first is a black-box
mKEM/DEM construction geared towards arbitrary length messages. We show
two incomparable results for it. First, if both the mKEM and DEM are CCA-
secure then so is the resulting mmPKE. Second, if both the mKEM and DEM
are RCCA secure then so is the mmPKE.

Our second mmPKE construction is optimized to provide shorter multi-
recipient and individual ciphertexts when encrypting short messages (as is the
case in all three protocols [28, 24, 3]). The construction also uses an mKEM and
DEM as building blocks. However, it also directly uses a Diffie-Hellman (DH)
group to ensure classic security regardless of the mKEM. In particular, to obtain
hybrid PQ/classic security for this mmPKE it is more efficient to use a PQ-only
mKEM directly rather than a hybrid one. Specifically, we show 4 results for this
construction.

1. If the mKEM and DEM are both RCCA secure, then so is the mmPKE.
2. If the mKEM and DEM are both CCA secure then so is the mmPKE.
3. If the DEM is RCCA secure, then the Double Strong Diffie-Hellman(DSDH)5

assumption implies that the mmPKE is RCCA secure.
4. If the mKEM is collision resistant and the DEM is CCA secure then the

(DSDH) assumption implies that the mmPKE is CCA secure.

Implementation. Finally, we present an implementation of a Kyber-based mKEM,
which is based on the AVX2 implementation by the Kyber team. Our bench-
marks show that, compared to a trivial Kyber-based mmKEM, computation
time required for key generation and decapsulation increases, but encapsulation
5 The DSDH is the standard assumption used to prove CCA security of DH based

non-interactive key exchange. [18]
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becomes significantly faster already for relatively small batches of, e.g., 10 re-
cipients. More importantly, the ciphertext size is decreased by up to 79%. We
place the implementation into the public domain (CC0). It is available from
http://131.174.142.4/kyber-mkem.tar.bz2.

1.2 Related Work

The idea of improving efficiency of PKE schemes by encrypting to many receivers
at once was first proposed by Kurosawa [29]. In particular, this work proposes the
first constructions and security notions for mmPKE. The mmPKE primitive has
been later considered in a line of works [9, 8, 36] which define stronger security
notions for it (where “stronger” relates to the adversary’s ability to corrupt
receivers), propose different modularizations and construct various mmPKE
schemes. For example, [36] defines mmKEMs to be used as a stepping stone in
building mmPKEs. All known mmPKE constructions are only clasically secure.

A parallel sequence of works considers relaxations of mmPKE/mmKEM,
namely, mPKE and mKEM. The mKEM primitive was introduced by Smart
[37]. Afterwards, various mKEM constructions have been proposed based on
hash proof systems [32] and pairings [40]. Finally, the first efficient post-quantum
secure mKEMs have been constructed in [28]. In terms of mPKEs, the only
construction with strong (stronger than IND-CPA) security was proposed recently
by Hashimoto et al. [24]. Another line of works considers identity-based versions
of (m)mPKE and (m)mKEMs [14, 35, 26, 30]. Finally, [5] build practical PQ
secure Dual-PRFs.

2 Preliminaries

We recall necessary definitions for our results in this section. We start with
quantum preliminaries and continue with primitives and their security notions.
We present additional preliminaries in Appendix A.

2.1 Post-Quantum Preliminaries

We define the most important building blocks needed for our QROM proofs. For
a more thorough introduction on quantum computation, see e.g. [34].

2.1.1 Oneway-to-Hiding (O2H) We recall the original version of the well-
known Oneway-to-Hiding lemma [39], using the notation from [4]. Intuitively,
the lemma allows us the bound the advantage of an adversary in detecting
programming in the quantum random oracle model.

Lemma 1 (Original O2H [4], Theorem 3). Let R be a set and S ⊂ R
be random. Let G,H be random functions with domain R satisfying ∀r /∈ S :
G(r) = H(r). Let z be a random classical value (S,G,H, z may have arbitrary
joint distribution). Let A be a quantum oracle algorithm making q oracle queries,
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expecting input z. Let Ext be the algorithm which on input z samples a uniform i
from {1, . . . , q}, runs A right before its i-th query to G, measures its query input
register and outputs the measurement m. Then∣∣Pr[AG(z)⇒ 1]− Pr[AH(z)⇒ 1]

∣∣ ≤ 2q
√

Pr[m ∈ S : m←$ ExtH(z)].

2.1.2 Extractable Quantum Random Oracle Simulation In general, it
isn’t possible to extract the values an adversary queried in a quantum random
oracle without noticeable disrupting the adversaries quantum state. This problem
was solved in the seminal work of Zhandry [42] using so-called compressed
oracles. [17] simplified the formalism of compressed oracles and defined the clean
abstraction of a quantum random oracle simulator which allows for extraction
queries (under specific conditions) without noticeably changing the adversaries
state. We recall their construction in Definition 2 together with some properties
in Definition 1

Definition 1. Let n ∈ N, X , T two set, f : X × {0, 1}n → T a function and
R ⊂ X × {0, 1}n a relation. We define

Γ (f) := max
x∈X
t∈T

|{y|f(x, y) = t}| , Γ ′(f) := max
x,x′∈X
y∈{0,1}n

|{y|f(x, y) = f(x′, y′)}|

and ΓR := max
x∈X
|{y|(x, y) ∈ R}| .

Definition 2 (Extractable Quantum Random Oracle Simulator). Let
n ∈ N, X , T two sets, f : X × {0, 1}n → T a function and R′ ⊂ X × T and
R ⊂ X × {0, 1}n relations with (x, y) ∈ R⇔ (x, f(x, y)) ∈ R′.

We define the stateful quantum simulator Sf that has the (quantum accessible)
interfaces Sf .RO : X → {0, 1}n and Sf .E : T → X ∪ ⊥ and the following
properties:

1. If no query to Sf .E is made, Sf .RO is indistinguishable from a (quantum)
random oracle.

2. Any two independent queries to Sf .RO (resp. Sf .E) commute.
3. Any two subsequent queries to Sf .E and Sf .RO 8

√
Γ (f)
2n−1 -almost-commute.

4. Any query to Sf .RO (resp. Sf .E) is idempotent, i.e. returns the same result
if no other query was made in between.

5. If x̂ = Sf .E(t) and ĥ = Sf .RO(x̂) are two subsequent classical queries, then
Pr
[
x̂ 6= ⊥ ∧ f(x̂, ĥ) 6= t

]
≤ 2Γ (f)

2n .

6. If h = Sf .RO(x) and x̂ = Sf .E(f(x, h)) are two subsequent classical queries,
then Pr[x̂ = ⊥] ≤ 1

2n−1 .
7. Let A be an adversary making at most q queries to the Sf .RO oracle and no

queries to the Sf .E oracle, which outputs t ∈ T . Then Pr[(x̂, t) ∈ R′ | t←$

ASf .RO; x̂←$ Sf .E(t)] ≤ 128 · q2 · ΓR/2n.
8. Let A be an adversary making at most q queries to Sf .RO and no queries

to Sf .E, that outputs x, t ∈ X × T . Then Pr[x̂ 6= x ∧ f(x, h) = t | t, x ←$

ASf .RO;h←$ Sf .RO(x); x̂←$ Sf .E(t)] ≤ 40e2 · (q + 2)3Γ ′(f)/2n.
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Let us give some intuition on the properties of S. Properties 1 and 2 ensure,
that S behaves like a regular quantum random oracle, unless S.E is called and
that independent query don’t interfere with one another. Property 3 tells us that
extraction only causes detectable change in the state of S with low probability
(as long as f is sparse). Property 4 ensures that queries are consistent as long as
the state of the oracle does not change between queries. Property 5 states that if
extraction succeeds, then it returns a correct preimage with high probability and
6 state that extraction almost always works if an image was indeed generated
via the oracle. Property 7 gives us a bound for finding a specific relation on
input/output pairs of the simulator (i.e. quantum search is hard in the simulated
random oracle). Lastly, Property 8 tells us that finding collisions in S is hard
despite the extraction interface. Specifically, even with the extraction interface,
the probability of finding a collision is still bounded by a cubic factor.

2.2 Multi-Message Multi-Recipient Encryption

A multi-message multi-recipient public-key encryption (mmPKE) scheme allows
a sender to encrypt a vector of messages to a vector of public keys. Formally, an
mmPKE scheme consists of the following algorithms. (Correctness can be found
in Appendix A.)

Parameter Generation: The parameter generation algorithm mmSetup gen-
erates randomly generated public parameters pp.

Key Generation: The key generation algorithm mmKGen(pp)→ (pk, sk) takes
the public parameters pp as input and generates a key pair (pk, sk).

Encryption: The encryption algorithm mmEnc(pp, ~pk, ~m)→ C takes the public
parameters pp, a vector of public keys ~pk and a vector of messages ~m as
input and produces a multi-recipient multi-message ciphertext C. The i-th
message in ~m is encrypted to the i-th public key in ~pk.

Extraction: The (deterministic) extraction algorithm mmExt(pp, C, i)→ c/⊥
takes the public parameters pp, a ciphertext C and an index i and outputs
the individual ciphertext for the i-th receiver (or ⊥).

Decryption: The decryption algorithm mmDec(pp, sk, c) → m/⊥ takes the
public parameters pp, a secret key sk and an individual ciphertext c as input
and returns either a decrypted message m or ⊥ if decryption fails.

Security. We recall in Fig. 1 the mmIND-CCA and mmIND-RCCA security with
adaptive corruptions from [3]. The notions build upon the analogous notions
for regular encryption. For each notion, the security experiment starts with the
challenger generating a number of mmPKE key pairs and sending the public
keys to the adversary. At some point, the adversary can request a challenge: it
sends to the challenger two challenge vectors of messages and a challenge vector
of public keys, all vectors of the same length. The public keys in the challenge
vector can be either chosen from those generated by the challenger or chosen by
the adversary.

8



Game mmIND-CCA, mmIND-RCCA

ExpmmIND-ATK
mmPKE,N,leak,b(A)ATK ∈ {CCA,RCCA}

(A1,A2)← A
pp← mmSetup()
for i ∈ [N ] do (pki, ski)← mmKGen(pp)
Cor← ∅
( ~pk
∗
, ~m∗0, ~m

∗
1, st)← ADec1,Cor

1 (pp, pk1, . . . , pkN )
req |~m∗0| = |~m∗1| = | ~pk

∗
| ∧ leak(~m∗0) = leak(~m∗1)

C∗ ←$ mmEnc(pp, ~pk
∗
, ~mb)

b′ ← ADecATK
2 ,Cor

2 (C∗, st)
req ∀j : (m∗0[j] 6= m∗1[j] =⇒

~pk
∗
[j] ∈ {pki : i ∈ [N ] \ Cor})

return b′ = b

Oracle Dec1(i, c)

req i ∈ [N ]
return
mmDec(pp, ski, c)

Oracle Cor(i)

req i ∈ [N ]
Cor +← i
return ski

Oracle DecmmIND-RCCA
2 (i, c)

req i ∈ [N ]
m← mmDec(pp, ski, c)
if ∃j : ~pk

∗
[j] = pki
∧ m ∈ {~m∗0[j], ~m∗1[j]} then

return ’test’
else return m

Oracle DecmmIND-CCA
2 (i, c)

req i ∈ [N ]
req @j : ~pk

∗
[j] = pki ∧ c = mmExt(pp, C, j)

return mmDec(ski, c)

Fig. 1: The mmIND-RCCA and mmIND-CCA security game for mmPKE with an
arbitrary leakage function leak(~m).

In addition, throughout the experiment, the adversary can adaptively corrupt
the key pairs generated by the challenger and access a decryption oracle. The
oracle is defined in a way that does not allow the adversary to trivially decrypt
the challenge. Note that this mechanism is slightly different for CCA and RCCA;
this is the only difference between the notions.

To disallow trivial wins, we require that the challenge message vectors coincide
on slots where the keys in the challenge public key vector are corrupt or chosen
by the adversary.

Further, we parameterize the notion by a function leak(~m) and require that
the output of leak on the two challenge message vectors is the same. The function
leak formalizes all metadata about encrypted vectors that need not be kept secret.
For instance, these can be the lengths of individual messages or structure of the
vector (e.g. whether two consecutive messages are the same).

Definition 3. Let mmPKE be an mmPKE scheme, let N be an integer and let
ExpmmIND-ATK

mmPKE,N,leak,b(A) be defined in Fig. 1. Further, let leak be a function with
a domain containing all message vectors. For ATK ∈ {CCA,RCCA} we denote
the advantage of adversary A playing game mmIND-ATK with leakage leak by
AdvmmIND-ATK

mmPKE,N,leak(A) and define it to be:∣∣∣∣Pr[ExpmmIND-ATK
mmPKE,N,leak,1(A)⇒ 1]− Pr[ExpmmIND-ATK

mmPKE,N,leak,0(A)⇒ 1]
∣∣∣∣.

2.3 Multi-Recipient Key Encapsulation

A multi-recipient key-encapsulation mechanism (mKEM) allows to encapsulate a
single key for multiple recipients. It consists of the following algorithms:

Parameter Generation: The algorithm mSetup→ pp returns freshly sampled
public parameters pp.

9



Game mIND-CCA, mIND-RCCA

Experiment ExpmIND-ATK
mKEM,N,b(A), ATK ∈ {CCA,RCCA}

(A1,A2)← A
pp← mSetup()
for i ∈ [N ] do (pki, ski)← mKGen(pp)
Cor← ∅
((i∗1, . . . , i∗n), st)← ACor,Dec1

1 (pp, pk1, pk2, . . . , pkN )
(C∗, k∗0)← mEncaps(pp, pki∗1 , pki∗2 , . . . , pki∗n)
k∗1 ←$ {0, 1}κ

b′ ← ACor,DecATK
2

2 (st, C∗, k∗b )
req {i∗1, i∗2, . . . , i∗n} ∩ Cor = ∅
return b′ = b

Oracle Cor(i)

req i ∈ [N ]
Cor← Cor ∪ {i}
return ski

Oracle DecCCA
2 (i, c)

req i ∈ [N ]
k ← mDecaps(pp, c, ski)
for j s.t. i∗j = i do

req c 6= mExt(C∗, j)
return k

Oracle Dec1(i, c)

req i ∈ [N ]
return mDecaps(pp, c, ski)

Oracle DecRCCA
2 (i, c)

req i ∈ [N ]
k ← mDecaps(pp, c, ski)
if k ∈ {k∗0 , k∗1} then

return ’test’
else return k

Fig. 2: mIND-CCA and mIND-RCCA security experiments for mKEM.

Key Generation: The key generation algorithm mKGen(pp)→ (pk, sk) takes
as input a public parameter pp returns a fresh key pair (pk, sk).

Encapsulation: The (multi-recipient) encapsulation algorithm mEncaps(pp, pk1,
. . . , pkn)→ (C, k) takes in a sequence (of any length n > 0) of public keys
and outputs a (multi-recipient) ciphertext C and encapsulated key k.

Extract: The deterministic extraction algorithm mExt(pp, C, i) → c/⊥ takes
as input a multi-recipient ciphertext C and position index i and returns a
(individual) ciphertext c for the i-th recipient.

Decapsulation: The decapsulation algorithm mDecaps(pp, c, sk)→ k/⊥ takes
as input an individual ciphertext c and decapsulation secret key sk. If decap-
sulation succeeds it returns the encapsulated key k. (Otherwise, it returns an
arbitrary bitstring or ⊥.)

Correctness can be found in Appendix A.

Security. We define the strong security notion for mKEM with corruptions as
(implicitly) defined in [24], called mIND-CCA and the slightly weaker notion of
mIND-RCCA in Definition 4.

Definition 4. Let mKEM be an mKEM scheme, let N be an integer and let
ExpmmIND-ATK

mKEM,N,b (A) be defined in Fig. 2. For ATK ∈ {CCA,RCCA}, we define the
advantage of an adversary A against the mIND-ATK security of mKEM as

AdvmIND-ATK
mKEM,N (A) =

∣∣∣Pr[ExpmIND-ATK
mKEM,N,1(A)⇒ 1]− Pr[ExpmIND-ATK

mKEM,N,0(A)⇒ 1]
∣∣∣ .

2.4 Multi-Recipient Encryption

A multi-recipient public-key encryption (mPKE) scheme allows a sender to
encrypt a single message to a vector of public keys. We will mainly use this
primitive as a stepping stone towards constructing strongly secure mKEM (via
a multi-recipient variant of the Fujisaki-Okamoto transform). Therefore, even
though mPKE is a special case of mmPKE, we give syntax and security definitions
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Game mOW-CPA, mOW-CPAcorr

Experiment ExpmOW-ATK
mPKE,N (A), ATK ∈ {CPA,CPAcorr}

(A1,A2)← A
pp← mSetup()
for i ∈ [N ] do (pki, ski)← mKGen(pp)
Cor← ∅
if ATK = CPAcorr then

((i∗1, . . . , i∗n), st)← ACor
1 (pp, pk1, . . . , pkN )

else if ATK = CPA then
((i∗1, . . . , i∗n), st)← A1(pp, pk1, . . . , pkN )

m←$ M
r ←$ {0, 1}κ
ci ← mEnci(pp; r)
for j ∈ [n] do cd

j ← mEncd(pp, pki∗
j
,m, r)

if ATK = CPAcorr then m∗ ← ACor
2 (st, ci, cd

1, . . . , c
d
n)

else if ATK = CPA then m∗ ← A2(st, ci, cd
1, . . . , c

d
n)

return m = m∗ ∧ {i∗1, i∗2, . . . , i∗n} ∩ Cor = ∅

Oracle Cor(i)

req i ∈ [N ]; Cor +← i; return ski

Fig. 3: One-way security of mPKE.

Game mIND-CPA, mIND-CPAcorr

Experiment ExpmIND-ATK
mPKE,N,b(A), ATK ∈ {CPA,CPAcorr}

(A1,A2)← A
pp← mSetup()
for i ∈ [N ] do (pki, ski)← mKGen(pp)
Cor← ∅
if ATK = CPAcorr then

((i∗1, . . . , i∗n),m∗0,m∗1, st)← ACor
1 (pp, pk1, . . . , pkN )

else if ATK = CPA then
((i∗1, . . . , i∗n),m∗0,m∗1, st)← A1(pp, pk1, . . . , pkN )

r ←$ {0, 1}κ
ci ← mEnci(pp; r)
for j ∈ [n] do cd

j ← mEncd(pp, pki∗
j
,m∗b , r)

if ATK = CPAcorr then b′ ← ACor
2 (st, ci, cd

1, . . . , c
d
n)

else if ATK = CPA then b′ ← A2(st, ci, cd
1, . . . , c

d
n)

req {i∗1, i∗2, . . . , i∗n} ∩ Cor = ∅
return b′

Oracle Cor(i)

req i ∈ [N ]; Cor +← i; return ski

Fig. 4: IND security of mPKE.

for mPKE that are geared towards enabling the mKEM construction. In particular,
we use the less general syntax from [28] and only consider security with passive
attackers. Additionally, we need the notion of γ-keyindependent spreadness, which
is a variant of classical γ-spreadness for public key encryption and will be used
similarly in (a multi-recipient variant of) the Fujisaki-Okamoto transformation
to turn a weakly secure mPKE into a strongly secure mKEM. An mPKE scheme
consists of the following algorithms:

Parameter Generation: mSetup()→ pp returns a fresh public parameter pp.
Key Generation: Key generation algorithm mKGen(pp) → (pk, sk) takes as

input a public parameter pp and samples and returns a fresh key pair.
Encryption: Encryption consists of two algorithms: first, mEnci(pp)→ ci out-

puts a recipient-independent ciphertext component ci needed by all recipients.
Second, mEncd(pp, pk,m, r)→ cd takes as input a public key pk, a message
m and the randomness r used by mEnci and outputs a recipient-dependent
ciphertext component cd needed only by the recipient with pk.

Decryption: mDec(pp, sk, (ci, cd))→ m/⊥ takes as input a secret key sk and a
ciphertext consisting of a recipient-independent component ci and a recipient-
dependent component cd. It outputs a message m or ⊥ if decryption fails..

Correctness can be found in Appendix A.

Security. We define four security notions for mPKE, both one-way and indistin-
guishability with and without adaptive corruptions as in [24]. The notions are
formally defined in Figures 3 and 4. Roughly, for mOW-CPA security, it should be
hard for an adversary to find the encrypted random challenge message without
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the secret key. For mIND-CPA, the adversary can choose two messages and has to
decide, which of the two was encrypted. In the variants with adaptive corruptions,
the adversary can additionally corrupt honest keys, but can only be challenged on
honest keys to prevent trivial wins. mOW-CPA (resp., mOW-CPAcorr) is trivially
implied by mIND-CPA (resp., mIND-CPAcorr).

Definition 5. Let mPKE be an mPKE scheme and let N be an integer. For
ATK ∈ {CPA,CPAcorr}, we define the advantage of an adversary A against the
mOW-ATK security of mPKE as

AdvmOW-ATK
mPKE,N (A) = Pr[ExpmOW-ATK

mPKE,N (A)⇒ 1],

where ExpmOW-ATK
mPKE,N (A) is defined in Fig. 3. Further, we define the advantage of

A against the mIND-ATK security of mPKE as

AdvmIND-ATK
mPKE,N (A) = Pr[ExpmIND-ATK

mPKE,N,1(A)⇒ 1]− Pr[ExpmIND-ATK
mPKE,N,0(A)⇒ 1],

where ExpmIND-ATK
mPKE,N,b(A) is defined in Fig. 4.

Remark 1. Looking ahead, the Fujisaki-Okamoto transform (see Section 4) only
require oneway security. On the other hand, our compiler from security with-
out corruptions to security with corruptions (see Section 3.1) only works for
mIND-CPA security and is not applicable for mOW-CPA. Thus, so we define both
notions to show the stronger result.

3 Adaptively CPA-Secure mPKE

The goal of this section is to obtain (single-message) multi-recipient PKE (mPKE)
schemes that satisfy the mOW-CPAcorr security notion, i.e., they are one-way
secure in the presence of passive attackers and corruptions. These schemes are
meant to be turned into IND-CCA secure (single-key) multi-recipient KEMs
(mKEMs) using the FO transform described in Section 4.

We observe that most (m)mPKE and (m)mKEM constructions proposed
so far, including [29, 9, 8, 36, 28], have been analyzed in the setting without
(adaptive) corruptions. This is rather surprising given that they are meant to
be used in applications like secure messaging where such a setting is considered
completely unrealistic. Even more surprisingly, there seems to be no way to adapt
the proofs for the setting without corruptions to the setting with corruptions.6

For this reason, we construct in this section a black box compiler that takes
as input an mPKE satisfying the standard security notion considered in the
literature, mIND-CPA, and outputs an mPKE that satisfies mIND-CPAcorr security
which is the same as mIND-CPA except the adversary can adaptively corrupt
6 This is quite unintuitive – why would the adversary gain any meaningful power from

the ability to corrupt key pairs that are independent of those used in the challenge?
And indeed, we don’t find any specific attacks. However, the known proof techniques
fail for reasons related to the so called commitment problem.
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Algorithm Comp[mPKE,H]

mSetup()

return mPKE.mSetup()

mKGen(pp)

(pk, sk)← mPKE.mKGen(pp)
s←$ {0, 1}κ; swapPk←$ {0, 1}
if swapPk = 0 then pkleft ← pk
else pkleft ← H(s)− pk
return ((pkleft, s), (sk, swapPk))

mEnci(pp; r = (rfirst, rsecond))

ci
first ← mPKE.mEnci(pp; rfirst)
ci

second ← mPKE.mEnci(pp; rsecond)
return ci = (ci

first, c
i
second)

mEncd(pp, pk = (pkleft, s),m, r = (rfirst, rsecond))

pkright ← H(s)− pkleft
swapCtx ←$ {0, 1}
if swapCtx = 0 then (pkfirst, pksecond)← (pkleft, pkright)
else (pkfirst, pksecond)← (pkright, pkleft)
cd

first ← mPKE.mEncd(pp, pkfirst,m, rfirst)
cd

second ← mPKE.mEncd(pp, pksecond,m, rsecond)
return cd = (cd

first, c
d
second, swapCtx)

mDec(pp, (sk, swapPk), ((ci
first, c

i
second), (cd

first, c
d
second, swapCtx)))

if swapPk⊕ swapCtx = 0 then
return mPKE.mDec(pp, sk, (ci

first, c
d
first))

else
return mPKE.mDec(pp, sk, (ci

second, c
d
second))

Fig. 5: The mIND-CPAcorr secure mPKE scheme outputted by our compiler.

honest keys. We note that mIND-CPAcorr implies mOW-CPAcorr, therefore, the
output of the compiler achieves the goal of this section.

Finally, we conclude this section with a review of known mPKE constructions
which can be used as input to our compiler.

3.1 The Compiler

The basic construction. The compiler is defined in Fig. 5. At a high level, the
basic idea is to adapt the technique from [21] for obtaining adaptively secure
broadcast encryption to the mPKE setting.

This means that the compiler essentially runs two parallel instances of the
mIND-CPA secure scheme mPKE. Each recipient has two mPKE key pairs, called
“left” and “right”. He only knows one of the secret keys and he keeps it secret
which one. To encrypt a message m to recipients 1 to n, the encryptor runs the
mPKE encryption twice. Both times, the encrypted message is m. Further, for
each recipient i, its left public key goes to one invocation of mPKE and its right
public key to the other. For each i, the encryptor chooses at random whether the
left key goes to the first or to the second invocation. The resulting ciphertext
consists of the two mPKE ciphertexts as well as, for each i, the bit indicating the
invocation which used the i-th left key.

The description in Fig. 5 formalizes the above intuition in the mPKE syntax
with the encryption split into mEnci and mEncd. In particular, values computed
for the first invocation of the mPKE encryption are marked by the subscript
first, while for the second invocation with the subscript second. The bit swapCtx
sampled by mEncd for the i-th recipient decides if the left mPKE public key of
that recipient goes to the second invocation, i.e., the public keys are swapped, or
to the first.

At this point, the above scheme may seem quite unintuitive. The reason is
that we are not modifying mPKE in order to prevent any real attacks, but rather
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to enable a security proof. This means that to get an intuition for the scheme,
one has to first get an intuition for the proof. We note that this proof technique
is not our contribution but the result of [21]; we invite all readers interested in
why this works to look at the proof of our compiler’s security in Appendix B.1.

We note that the recent work by Hashimoto et al. [24] also adapts the technique
of [21] to the mPKE setting. However, they do not have the optimization we
introduce next.
Key compression. To optimize the compiler, we introduce a technique called
key compression. We observe that in the basic construction a recipient only
needs one secret key, say for pkleft. This means that he can generate the right
public key pkright without necessarily knowing the secret key, for example as the
output of a hash function on a random seed s. Then instead of the full public key
(pkleft, pkright), he publishes (pkleft, s). Since s can be much shorter than a public
key, this would cut the public key size of the compiled scheme roughly in half.

Of course, the recipient cannot simply publish (pkleft, s), because he should
hide whether he knows the left or the right secret key. To fix this, we first assume
that there is some group operation + on the public key space of pk. Then, we
make H(s) the sum of pkleft and pkright. That is, given a public key (pkleft, s), we
can compute pkright = H(s)− pkleft. Now if the recipient knows the right secret
key only, he can publish the key (H(s)− pkright, s).

Remark 2. Key compression requires that one can define some group operation
on the public key space of mPKE. This is typically very straightforward. For
instance, the public key spaces of mPKE constructions based on Diffie-Hellman
[36] and LWE [28] are by definition groups. Alternatively, if an mKEM scheme
has a public key space with dense representation in bitstrings, then the group
operation can be bit-wise XOR.

The technique also requires a hash function outputting elements of the public
key space. For an overview of such hash functions in the (elliptic-curve) DH
context see, e.g., [38]. For LWE-based constructions, the typical approach is to
use rejection sampling on the output of a XOF; see, e.g., [2, Sec. 3&7]. However, if
for some instantiation of mPKE such a hash function does not exist, the fallback
is to use the compiler without key compression shown in [24].

Security. Security of the compiler, and in particular of the key compression,
requires an additional property from mPKE. Roughly, the public key produced
by key generation should look like a uniform random element of the public-key
space. Intuitively, this is necessary to argue that the output of the hash looks
like an honest public key, so by looking at a recipient’s public key, one cannot
tell if the recipient knows the left or the right secret key. This fact is necessary
to use the proof technique from [21]. Formally, we define
Definition 6. For a scheme mPKE with public-key space PK, parameter-generation
algorithm mSetup and key-generation algorithm mKGen, we define the advantage
of an adversary A against random-key security of mPKE, AdvmRND-PK

mPKE (A), as
Pr
[
A(pp, pk)⇒ 1

∣∣∣∣ pp←$ mSetup()
(pk, ∗)←$ mKGen(pp)

]
− Pr

[
A(pp, pk)⇒ 1

∣∣∣∣ pp←$ mSetup()
pk←$ PK

]
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The following theorem formalizes security and correctness of the compiler.
We prove it in Appendix B.1.

Theorem 1. Let mPKE = Comp[mPKE,H], where mPKE is an mPKE with a
group operation over the space of public keys and H is a hash function, be defined
as in Fig. 5. For any number of recipients N and for any (classical or quantum)
adversary A, there exist (classical or quantum) adversaries B1 and B2 such that

AdvmIND-CPAcorr

mPKE,N (A) ≤ AdvmIND-CPA
mPKE,N (B1) + 2N ·AdvmRND-PK

mPKE (B2),

where H is modeled as a random oracle. Additionally, if mPKE is δ-correct, then
Comp[mPKE,H] is δ-correct as well.

3.2 Examples of mIND-CPA Secure Schemes

mIND-CPA secure mPKE can be constructed from various classical and post-
quantum assumptions. For lattice-based constructions, schemes based on the
Lindner-Peiker framework [31] can be extended to the mPKE setting [28]. That
work also provides an overview over various NIST competition candidates that
fit this framewor. Additionally, [15] propose a CCA-secure mKEM from the
LPN assumption, which implicitly also contains an mPKE scheme. For isogenies,
there are variants from SIDH as well as CSIDH, which are both reminiscent of
the well-known hashed ElGamal construction [27]. For a comparison in terms of
ciphertext size and computation, we again refer the reader to [28]. Standard model
constructions exist from prime-order groups[6, 9, 29, 36], which are variations on
the ElGamal or Cramer-Shoup encryption schemes.

Note that the isogeny-based PKE called CSIDH-ECIES-KEM proposed in
[41] is conceptually almost identical to the mmPKE scheme proven secure in
[36]7. However, there exists no direct proof of post-quantum CCA security for
CSIDH-ECIES-KEM, so we opt to view it as a CPA-secure PKE and apply the
same transformations as to the other schemes. Such a direct CCA security proof
is an interesting open problem.

4 The FO Transform

The Fujisaki-Okamoto (FO) transform for regular encryption [19, 20] takes as
input an OW-CPA secure PKE scheme and outputs an IND-CCA secure KEM. It
works in the random oracle model (ROM). The work [28] adapts the FO to the
multi-recipient setting, i.e., their transform takes as input an mOW-CPA mPKE
and outputs an mIND-CCA secure mKEM. They prove the transform’s security
in both the ROM and the QROM. However, they do not consider adaptive
corruptions; their proof fails in this setting, because their construction uses
implicit rejections. Moreover, [17] claim that there is a non-trivial gap in the
7 CSIDH-ECIES-KEM is defined as a regular KEM, but the same randomness reuse as

in [36] yields an mmPKE.
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Algorithm Generic FO Transform FO[mPKE,H,G1,G2]

mSetup()

return mPKE.mSetup()
mKGen(pp)

return mPKE.mKGen(pp)
mExt(C, i)

return mPKE.mExt(C, i)

mEncaps(pp, pk1, . . . , pkn)

m←$ M
c0 ← mPKE.mEnci(pp; H1(m))
for i ∈ [n] do

ci ← mPKE.mEncd(pp, pki,m;
G1(m),G2(pki,m))

return (H(m), (c0, . . . , cn))

mDecaps(pp, sk, c)

m← mPKE.mDec(sk, c)
if m = ⊥ then return ⊥
c0 ← mPKE.mEnci(pp; G1(m))
c1 ← mPKE.mEncd(pp, pk,m;

G1(m),G2(pk,m))
if c 6= (c0, c1) then return ⊥
return H(m)

Fig. 6: The Fujisaki-Okamoto transform for mPKE with adaptive corruption.

proof. The work [24] partially fixes this problem by adding explicit rejections
and proving security with adaptive corruptions in the ROM.

In this section, we complete the above picture by proving security of the
multi-recipient FO transform in the QROM with adaptive corruptions. To fix the
issue pointed out in [17], we use the online-extractable simulation technique [17].

New notion of spreadness. In order to apply the framework of [17], we introduce
a new notion of spreadness. It is meant for the decomposable syntax of mPKEs
from [28], i.e. one where ciphertexts consist of a public key independent part
that all receiver need an a personalized, public key dependent part that is only
needed by a single receiver. Regularly, γ-spreadness bounds the probability of
the whole ciphertext taking a specific value. However due to this decomposition,
we require only that it is unlikely for the public key independent part to take any
specific value. We formalize this as γ-keyindependent spreadness in Definition 7

Definition 7 (γ-keyindependent spreadness). Let n ∈ N and mPKE be an
mPKE scheme. Let mPKE is γ-keyindependent spread, if

E
pp∈mSetup

pk∈mKGen(pp)

max
m∈M
ct∈CI

Pr
r0∈R

[
ct = mEnc(pp; r0)

] ≤ 2−γ ,

where CI denotes the set of all recipient-independent ciphertext parts.

Security. We recall the construction of the multi-recipient FO transform in Fig. 6.
The following theorem formalizes its security with adaptive corruptions in the
ROM and in the QROM.

Theorem 2. Let mPKE be a δ-correct and γ-keyindependent spread mPKE with
message spaceM and G1,G2 and H (classical or quantum) random oracles. Then
for any (classical or quantum) adversary A, there exists a (classical or quantum)
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adversary B′ with approximately the same runtime as A, s.t.

AdvmIND-CCA
FO[mPKE,G1,G2,H],N (A) ≤ 4q ·

√
AdvmOW-CPAcorr

mPKE,N (B′) + 48q2
√
nδ

+ 23q√q · 2−
γ
4 + 28e

√
q3 · 2−

γ
2 + 28eq

√
q3

2κ +
8q√q

2κ

with κ as the output length of the random oracles and q = 2qD + qH + qD, where
qD is the number of classical queries to the decapsulation oracle, and qG and qH
is the number of (classical or quantum) queries to the random oracles G1 and G2
and to the random oracle H respectively made by A.

Proof. The proof for the classical case can be found in [24]. For the quantum
case, we adapt the security proof of the standard FO transform from [17] to the
mPKE FO transform. The main difference is that [17] considers PKE and KEM,
while we look at mPKE and mKEM.

The proof idea still remains similar: We switch the randomness used to encrypt
the challenge message and the key to uniformly random and then argue that an
adversary noticing this switch already breaks the mOW-CPAcorr security of the
underlying mPKE scheme. For the latter, we use the extractable quantum random
oracle simulator to extract the queries an adversary made to the oracle and use
them similarly to the classical setting to simulate the decapsulation oracle. Here,
the main observation is that the recipient-independent part of a ciphertext is
already a commitment to the encrypted message and we can extract the message.

For public parameters pp and keypair (pk, sk), let gpp be the maximum prob-
ability of any user-independent ciphertext c0 occurring and δsk the maximum
probability of a decryption error for a given keypair. Then E[gpp] ≤ 2−γ and
E[δsk] ≤ δ due to the definition of δ-correctness and γ-keyindependent spreadness,
with the expectation take over the randomness of the parameter and key gen-
eration. Formally, we define the games G0 to G11 in Fig. 7 and describe their
relation in the following paragraphs.
Game G0: This game is identical to the mIND-CCA game with b = 0, i.e.
ExpmIND-CCA

FO[mPKE,G1,G2,H],N,0(A) = Pr[G0
A = 1] Additionally, we interpret G1 and G2

as two interfaces of a single random oracle G with appropriate domain separation.
Game G1: Now, we puncture the random oracles G and H on the challenge
message m∗. Formally, we define two new punctured random oracles Ĝ and Ĥ
as follows. For each m 6= m∗ and i ∈ [N ]: H(m) = Ĥ (m), G(m) = Ĝ(m) and
G(pki,m) = Ĝ(pki,m). For each other input, the outputs of Ĝ and Ĥ are random
and independent. The adversary still gets access to the unpunctured oracles G and
H. However, we modify the decapsulation oracle as follows: Let r∗ = G1(m∗), r∗i =
G2(pki,m∗) for i ∈ [N ] and c∗ = (mEnci(pp; r∗), (mEncd(pp, pki∗

j
,m∗; r∗, r∗i∗

j
))j∈[n]).

Analogously, let r̂ = Ĝ1(m∗), r̂i = Ĝ2(pki,m∗) for i ∈ [N ] and ĉ = (mEnci(pp; r̂),
(mEncd(pp, pki∗

j
,m∗; r̂, r̂i∗

j
))j∈[n]). The decapsulation oracle uses the punctured

oracles on all queries except for parts of ĉ.
We argue that the view of the adversary doesn’t change between the two games.

Indeed, note that for all messages except for the challenge message m∗, nothing
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Games G0-G11

Games G0 − G2

pp←$ mSetup()
for i ∈ [N ] do (pki, ski)←$ mKGen(pp)
m∗ ←$ M
Oi ← {Cor,Deci,G1,G2,H} // G0-G1

Oi ← {Cor,Deci, Ĝ1, Ĝ2, Ĥ} // G2
(i∗1, . . . , i∗n, st)←$ AO1

1 (pp, (pki)i∈[N ])
ci∗ ← mEnci(pp; G1(m∗)) // G0-G2

ĉi ← mEnci(pp; Ĝ1(m∗)) // G1-G2
for j ∈ [n] do

cd∗
j ← mEncd(pp, pki∗

j
,m∗; G1(m),G2(pki∗

j
))

ĉd
∗
j ← mEncd(pp, pki∗

j
,m∗; Ĝ1(m), Ĝ2(pki∗

j
)) // G1 - G2

k∗0 ← H(m∗), k∗1 ←$ K
return b = AO2

2 (st, ci∗, cd∗
1, . . . , c

d∗
n, k
∗
0)

Games G3 − G11

pp←$ mSetup()
for i ∈ [N ] do (pki, ski)←$ mKGen(pp)
m∗ ←$ M
Oi ← {Cor,Deci, Ĝ1, Ĝ2, Ĥ} // G3

Oi ← {Cor,Deci,Sf .RO, Ĝ2, Ĥ} // G4-G11
(i∗1, . . . , i∗n, st)←$ BOi1 (pp, (pki)i∈[N ])
ci∗ ← mEnci(pp; G1(m∗))
for j ∈ [n] do

c∗j ← mEncd(pp, pki∗
j
,m∗; G1(m),G2(pki∗

j
))

k∗0 ← Ĥ (m∗), k∗1 ←$ K
m′ ←$ BO2

2 (st, ci∗, c∗1, . . . , c
∗
n, k
∗
1)

for i ∈ [qD] do m′i ←$ Sf .E(ci
(i)) // G4

return m′

Oracle Deci(j, (ci, c1)) // G0 − G3

if i = 2 ∧ (ci, cd) = (ci∗, cd
j
∗) then return ⊥

m = mDec(skj , (ci, c1))
req m 6= ⊥
r0 ← G1(m), r1 ← G2(pkj ,m), k = H(m) // G0

if m = m∗ then // G1

r0 ← Ĝ1(m), r1 ← Ĝ2(pkj ,m), k = Ĥ (m)
else r0 ← G1(m), r1 ← G2(pkj ,m), k = H(m)

r0 ← Ĝ1(m), r1 ← Ĝ2(pkj ,m) // G2-G3

req mEnci(pp, r0) = ci ∧mEncd(pp, pkj ,m; r0, r1) = cd

req mEncd(pp, pkj ,m; r0, r1) = cd

return Ĥ (m)

Oracle Deci(j, (ci, c1)) // G4 − G9

if i = 2 ∧ (ci, cd) = (ci∗, cd
j
∗) then return ⊥

m = mDec(skj , (ci, c1))
m′ ← Sf .E(ci) // G9

req m 6= ⊥
r0 ← Sf .RO(m), r1 ← Ĝ2(pkj ,m)
req mEnci(pp, r0) = ci ∧mEncd(pp, pkj ,m; r0, r1) = cd

m′ ← Sf .E(ci) // G5-G8

req m′ 6= ⊥ // G6-G8
req ci = mEnci(pp;Sf .RO(m′)) // G7-G8
req m = m′ // G8

return Ĥ (m)

Oracle Deci(j, (ci, cd)) // G10

if i = 2 ∧ (ci, cd) = (ci∗, cd
j
∗) then return ⊥

m = mDec(skj , (ci, c1))
m′ ← Sf .E(ci)
req m = m′ 6= ⊥
r0 ← Sf .RO(m′), r1 ← Ĝ2(pkj ,m′)
req ci = mEnci(pp; r0)
req cd = mEncd(pp, pkj ,m′; r0, r1)

return Ĥ (m′)

Oracle Deci(j, (ci, cd)) // G11

if i = 2 ∧ (ci, cd) = (ci∗, cd
j
∗) then return ⊥

m′ ← Sf .E(ci)
req m′ 6= ⊥
r0 ← Sf .RO(m′), r1 ← Ĝ2(pkj ,m′)
req ci = mEnci(pp; r0)
req cd = mEncd(pp, pkj ,m′; r0, r1)
return Ĥ (m′)

Fig. 7: Games G0 to G11 for the proof of Theorem 2.

changes as the oracles coincide. For (all parts of) c∗, the decapsulation oracle won’t
answer by definition. For ĉ, the oracle will also output ⊥ since the oracle uses the
unpunctured oracle for ĉ, which in turn uses the punctured randomness, so the
reencryption check will fail. Therefore, we have Pr

[
G0
A = 1

]
= Pr

[
G1
A = 1

]
.

Game G2: Finally, in G2 we switch the random oracles of the adversary to Ĝ
and Ĥ . Note that now c∗ is an encryption of a random message with randomness
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independent of the random oracles and k∗0 is a uniformly random key. Therefore,
we can also switch the key to k∗1 .

To bound the difference between the two games, we use the original oneway-to-
hiding(O2H) lemma (Lemma 1), which yields

∣∣∣Pr
[
G1
A = 1

]
− Pr

[
G2
A = 1

]∣∣∣ ≤
2(qH + qG + 2qD)

√
Pr
[
G3
B = m∗

]
, where G3 is identical to G2 except that B

simulates A and before a random query to one of the random oracles Ĝ, Ĥ
or the oracle queries made by a decryption query, B measures said query and
outputs the result.8 If B intends to measure a query but A makes less queries
or aborts beforehand, B outputs ⊥. Note that this differs from the approach of
[17] in that we let B measure an arbitrary random oracle query including those
in the decapsulation oracle. We don’t need the addition distinction as done in
their games since we always perform a reencryption check and therefore always
perform the random oracle queries which B might need for extraction.

To get the final advantage of the adversary in ExpmIND-CCA
FO[mPKE,G1,G2,H],N,1(A), we

have to revert the changes made before, so overall, we get
∣∣ExpmIND-CCA

FO[mPKE,G1,G2,H],N,0(A)−

ExpmIND-CCA
FO[mPKE,G1,G2,H],N,1(A)

∣∣ ≤ 4(qH + qG + 2qD)
√

Pr
[
G3
B = m∗

]
Game G4: In this game, we split Ĝ again into Ĝ1 and Ĝ2 and replace Ĝ1 by
the extractable simulator Sf .RO for the function f(m, r0) := mEnci(pp; r0) as
defined in Definition 2. Additionally, after B outputs its guess m′, we query
the extract interface Sf .E on all recipient-independent parts of encapsulations
ci

(j) that were queried to the decapsulation oracle. Since S simulates a random
oracle perfectly when no extraction queries are made and all extraction queries
are made after the execution of B is finished, this change is undetectable, so
Pr
[
G4
B = m∗

]
= Pr

[
G3
B = m∗

]
.

Game G5: Now, we move the extraction from the end of the execution to the
decapsulation oracle. Whenever an extraction call and a regular oracle call are
swapped, we apply property 3 to bound the distinguishing advantage of B. Since
A makes at most qG queries to Sf .RO and there is at most one query in each
of the qD decapsulation queries, we get

∣∣∣Pr
[
G5
B = m∗

]
− Pr

[
G4
B = m∗

]∣∣∣ ≤
8(qD + qG)

√
2Γ (f)

2κ = 8(qD + qG)
√

2gpp.

Game G6: In the next game, we abort if the extraction interface outputs ⊥ in a
decapsulation query. However, we perform this check after the queries to Sf .RO
used for reencryption and the reencryption check. Since both the random oracle
and extraction query are classical and subsequent, we can apply property 6 qD
times and get

∣∣∣Pr
[
G6
B = m∗

]
− Pr

[
G5
B = m∗

]∣∣∣ ≤ 2qD · 1
2n .

8 Formally, we reprogram not only on m∗ but also on all pairs (pki,m∗), but for
simplicity, we choose the above notation as we can extract m∗ from all these points.
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Game G7: In this game, we now require that the extracted message yields the
same recipient-independent ciphertext as the decrypted message. Since we extract
and immediately reencrypt and all queries in the decapsulation are classical, we
can use property 5 qD times, which yields

∣∣∣Pr
[
G7
B = m∗

]
− Pr

[
G6
B = m∗

]∣∣∣ ≤
2qD · Γ (f)

2κ = 2qD · gpp.

Game G8: Next, we assert that the extracted message m′ and the decrypted
message m are identical after the second reencryption check using m′. There are
two cases where this assertion can fail: 1) m 6= m′, but Sf .RO(m) = Sf .RO(m′),
i.e. there is a collision in the (simulated) random oracle. We can bound this case
using the collision finding probability proven in [16]. 2) m 6= m′ and Sf .RO(m) 6=
Sf .RO(m′), but still mEnci(pp;Sf .RO(m)) = mEnci(pp;Sf .RO(m′)). We can
bound this case using property 8, where we can bound Γ ′(f) ≤ gpp. Together with
the collision bound for q = (qG+qD+1), we get

∣∣∣Pr
[
G8
B = m∗

]
− Pr

[
G7
B = m∗

]∣∣∣ ≤
40e2(qD + qG + 1)3gpp + 42e2 (qD+qG+1)3

2κ , since the adversary makes at most qG
queries to Sf .RO and qD decapsulation queries in addition to the one query to
G1 after B is finished.

Game G9: We move the extraction queries in the decapsulation oracle to before
the random oracle queries to compute the reencryption randomness. Due to the
almost commutativity of the extractor (property 3), we can bound the difference
between the two games by

∣∣∣Pr
[
G9
B = m∗

]
− Pr

[
G8
B = m∗

]∣∣∣ ≤ 8qD ·
√

2gpp.

Game G10: We re-order the 4 consecutive req’s. Re-ordering req’s can never
change the observable behavior of the oracle. In detail: we anyway check that
m = m′ and that they are not bot, so we can do this at the beginning as well.
Now we know that m = m′ before the reencryption check, so we can replace all
subsequent occurrences of m by m′. Pr

[
G10
B = m∗

]
= Pr

[
G9
B = m∗

]
.

Game G11: Finally, in game G11, we don’t need the decrypted message m anymore,
so we drop the decryption query (as well as the equality check m = m′). This
introduces an error, if the adversary produces a ciphertext ci, cd, which is an
honest decryption of m, but decrypts to another message m̂. The reason is that
our extractor produces m and the reencryption succeeds. That is, an adversary
can distinguish the two games by finding a message causing a decryption error.

We define the relation R := {(m, (r0 = Sf .RO(m), r1 = Ĝ2(m, pki)) | ∃i ∈
[n] : ci = mEnci(pp; r0) ∧ cd = mEncd(pp, pki,m, r0, r1) ∧m 6= mDec(ski, (ci, cd)},
i.e. all messages and their corresponding randomness for a given receiver which
induce a decryption error when used for signing. Since both Sf .RO and Ĝ2 are
random oracles from the perspective of an adversary (with high probability), we
can use the definition of δski and the union-bound to see that ΓR

2κ ≤ n ·max
i∈[n]

(δski).

Applying property 7 for R then gives us
∣∣∣Pr
[
G11
B = m∗

]
− Pr

[
G10
B = m∗

]∣∣∣ ≤
128(qD + qG)2n ·max

i∈[n]
(δski).
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Finally, the secret keys aren’t needed to compute the decapsulation queries
in G11 and the randomness used in c∗ is independent of Ĝ1/Sf .RO and Ĝ2.
Therefore, we can use the mOW-CPAcorr security of mPKE to bound B’s advantage
in G11. Concretely, an adversary B′ against the mIND-CPAcorr security of mPKE
chooses a random messages m∗, samples a random key K∗ and forwards all
keys, its challenge c∗ and K∗ to B according to the subset of keys chosen by B.
Corruption queries are forwarded to its own oracle. Finally, if B outputs m′, the
attacker B′ forwards it. B′ wins the mOW-CPAcorr game if and only if B finds
the message m∗ for which the oracle was punctured, therefore Pr [G11 ⇒ m∗] ≤
AdvmOW-CPAcorr

mPKE,N (B′). Combining all probabilities and setting ε1 = 8(qD+qG)
√

2gpp,
ε2 = 2qD

2κ , ε3 = 2qDgpp, ε4 = 42e2(qD+qG+1)3√gpp +42e2 (qD+qG+1)3

2κ , ε5 = 8qD ·√
2gpp and ε6 = 128(qD + qG)n ·max

i∈[n]
(δski), we get AdvmIND-CCA

FO[mPKE,G1,G2,H],N (A) ≤

4(qH + qG + 2qD)
√

AdvmOW-CPAcorr

mPKE,N (B′) + ε1 + ε2 + ε3 + ε4 + ε5 + ε6. With q =
(qH + qG + 2qD), using that the square root function is convex and taking the
expected values, we get the bound in the theorem.

5 An mKEM Combiner

A KEM combiner is a construction that takes as input two KEMs and outputs a
KEM that is secure as long as at least one of the input KEMs is secure. The goal
of combining KEMs is to derive trust from multiple assumptions rather than
relying on a single one.

KEM combiners are of particular importance in the post-quantum setting.
Here, one typically does not want to rely solely on one of the relatively new
assumptions believed to hold in the post-quantum world. Therefore, such an
assumption is combined with a well studied classical assumption such as DL.

In this section, we consider mKEM combiners which are analogous to KEM
combiners but in the multi-recipient setting.

Challenges in the multi-recipient setting. Simple and efficient KEM combiners
are known in the single-recipient setting. For example, a combiner for IND-CCA
secure KEMs [22] simply runs the two KEMs in parallel. Say the first KEM
encapsulates a key k1 in a ciphertext c1, and the second KEM encapsulates k2 in
c2. The key encapsulated by the combined scheme is H(k1, k2, c1, c2), where H is
a hash function modeled as a random oracle.

Including both ciphertexts in the hash is crucial for IND-CCA security of
the combined scheme. This is demonstrated by a simple attack: Say we compute
the key as H(k1, k2) and the decapsulation of the insecure second KEM outputs
k2 = 0 on any ciphertext c2. In this case, no matter how secure is the first
KEM, an IND-CCA adversary can decapsulate the challenge ciphertext (c1, c2)
by sending (c1, c

′
2) for c′2 6= c2 to the decapsulation oracle.

This indicates that combiners for IND-CCA secure KEMs should mix the
ciphertexts into the encapsulated key in some way. Indeed, this is the case for all
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Algorithm Comb[mKEM1,mKEM2,PRF]

mSetup()
return (mKEM1.mSetup(),mKEM2.mSetup())

mKGen((pp1, pp2))
(pk1, sk1)← mKEM1.mKGen(pp1)
(pk2, sk2)← mKEM2.mKGen(pp2)
return (pk = (pk1, pk2), sk = (sk1, sk2))

mExt((pp1, pp2), (C1, C2), i)
c1← mKEM1.mExt(pp1, C1, i)
c2← mKEM2.mExt(pp2, C2, i)
return c = (c1, c2)

mEncaps((pp1, pp2), (pk11, pk21), . . . , (pk1n, pk2n))
(C1, k1)← mKEM1.mEncaps(pp1, pk11, . . . , pk1n)
(C2, k2)← mKEM2.mEncaps(pp2, pk21, . . . , pk2n)
return (C = (C1, C2), k = PRF(k1, k2))

mDecaps((pp1, pp2), (c1, c2), (sk1, sk2))
k1← mKEM1.mDecaps(pp1, c1, sk1)
k2← mKEM2.mDecaps(pp2, c2, sk2)
if k1 = ⊥ ∨ k2 = ⊥ then

return ⊥
else

return k = PRF(k1, k2)

Fig. 8: mKEM combiner that executes mKEM1 and mKEM2 in parallel and
computes the key as PRF(k1, k2), where k1 and k2 come from mKEM1 and
mKEM2, respectively.

constructions we are aware of. However, this is a showstopper for mKEMs, where
each recipient should derive the same key using a different individual ciphertext.

The construction. Since the standard combiners are incompatible with mKEMs,
we consider instead the simplest combiner possible which runs the two mKEMs in
parallel and computes the encapsulated key as PRF(k1, k2). Here, PRF is a dual
PRF [7], i.e. both PRF(k, x) and PRF′(k, x) = PRF(x, k) have the PRF security
property. For example, a random oracle is a dual PRF. Simple and post-quantum
dual PRFs are also known in the standard model. We provide the pseudocode of
the combiner in Fig. 8.

Since our combiner does not include ciphertexts in the encapsulated key, it is
not true that its IND-CCA security is implied by IND-CCA security of at least
one input mKEM. The reason is that it is vulnerable to the same attack as the
one we described in the previous paragraph for single-recipient KEMs. Therefore,
in this section we propose two different security statements for our combiner.

5.1 The First Statement: More Direct Guarantees

The first idea is to replace IND-CCA with the slightly weaker notion of replayable
CCA, IND-RCCA. Roughly, the difference is that IND-RCCA does not consider
it an attack if it is possible to, given a ciphertext, come up with a different
ciphertext as long as it encapsulates the same key.

Intuitively, while IND-CCA requires that a scheme protects the ciphertext
string, IND-RCCA requires that it protects the ciphertext content. Since in
most use-cases all one cares about is the latter, IND-RCCA is often a more
suited notion. Indeed, IND-RCCA is sufficient for secure communication [13] and
continuous group key agreement, a component of group messaging [3].

We notice that the attack described at the beginning of this section breaks
IND-CCA but not IND-RCCA. Indeed, we can prove that the combined scheme

22



is IND-RCCA secure if at least one of the input mKEMs is IND-RCCA secure.
The proof can be found in Appendix B.2.

Theorem 3. Let mKEM = Comb[mKEM1,mKEM2,PRF], where mKEM1 and
mKEM2 are some mKEM schemes and PRF is a PRF, be defined as in Fig. 8. Let
dual(PRF) denote the PRF obtained by swapping the input and key of PRF, i.e.,
dual(PRF)(k, x) = PRF(x, k). For any N ∈ N and for any (classical or quantum)
adversary A, there exist (classical or quantum) adversaries B1, B2, B′1, B′2 s.t.

AdvmIND-RCCA
mKEM,N (A) ≤ 2 ·AdvmIND-RCCA

mKEM1,N (B1) + AdvPRF
PRF(B2) and

AdvmIND-RCCA
mKEM,N (A) ≤ 2 ·AdvmIND-RCCA

mKEM2,N (B′1) + AdvPRF
dual(PRF)(B′2).

Additionally, if mKEM1 is δ1-correct and mKEM2 is δ2-correct, then mKEM is
(δ1 + δ2)-correct.

5.2 The Second Statement: Stronger Assumptions

The second idea is to prove that the combined scheme is IND-CCA secure as long
as one of the input mKEMs is IND-CCA secure and the other insecure mKEM
satisfies a very weak property called collision resistance.

Roughly, collision resistance requires that, even given a secret key, it is hard
to come up with two ciphertexts that decapsulate to the same (non ⊥) key. It
turns out that most known mKEMs already are collision resistant (against classi-
cal/quantum adversaries), assuming only collision resistance of their underlying
components, such as hash functions (against classical/quantum adversaries). We
give examples in the next subsection. We define collision resistance as follows.

Definition 8. The advantage of an adversary A against collision resistance of
mKEM = (mSetup, mKGen,mEncaps,mExt,mDecaps) is defined as

AdvCR
mKEM(A) = Pr

[
c 6= c′ ∧mDecaps(pp, sk, c) =

mDecaps(pp, sk, c′) 6= ⊥

∣∣∣∣∣ pp← mSetup(),
(pk, sk)← mKGen(pp),
(c, c′)← A(pp, pk, sk)

]
.

We can now prove the following theorem about our combiner. The proof can
be found in Appendix B.2.

Theorem 4. Let mKEM = Comb[mKEM1,mKEM2,PRF], where mKEM1 and
mKEM2 are some mKEM schemes and PRF is a PRF, be defined as in Fig. 8. Let
dual(PRF) denote the PRF obtained by swapping the input and key of PRF, i.e.,
dual(PRF)(k, x) = PRF(x, k). For any N ∈ N and for any (classical or quantum)
adversary A, there exist (classical or quantum) adversaries B1 to B3 and B′1 to
B′3 such that

AdvmIND-CCA
mKEM,N (A) ≤ 2 ·AdvmIND-CCA

mKEM1,N (B1) + AdvPRF
PRF(B2) + 2N ·AdvCR

mKEM2(B3) and
AdvmIND-CCA

mKEM,N (A) ≤ 2 ·AdvmIND-CCA
mKEM2,N (B′1) + AdvPRF

dual(PRF)(B′2) + 2N ·AdvCR
mKEM1(B′3).

Additionally, if mKEM1 is δ1-correct and mKEM2 is δ2-correct, then mKEM is
(δ1 + δ2)-correct.
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Algorithm DH-mKEM[G, g, p,H,DEM]

mSetup()
return ⊥

mKGen()
x←$ Zp
return (gx, x)

mEncaps(X1, . . . , Xn)
m←$ {0, 1}κ
y ←$ Zp
for i ∈ [n] do

kdem
i ← H(’dh-key’, (Xi)y, gy, i)
ctxi ← DEM.E(kdem

i ,m)
K ← H(’output-key’,m, gy)
C ← (gy, ctx1, . . . , ctxn)
return (C,K)

mExt(C = (Y, ctx1, . . . , ctxn), i)
req i ∈ [n]
return (Y, ctxi)

mDecaps(c = (Y, ctx), x)
kdem ← H(’dh-key’, (Y )x, Y )
m← DEM.D(kdem, ctx)
req m 6= ⊥
return H(’output-key’,m, Y )

Fig. 9: The collision-resistant mKEM construction based on DH. Observe that to
get the encapsulated key, we hash in the randomness Y = gy.

5.3 Collision-Resistant mKEMs

From the FO transform. We show that any mKEM obtained using the FO
transform is collision resistant assuming only collision resistance of the hash
function used by the FO to derive the output key. This means that all post-
quantum secure mKEMs from [28] are collision-resistant. The formal claim follows.
The proof can be found in Appendix B.3.

Theorem 5. Let mKEM = FO[mPKE,H,G1,G2], where mPKE is any mPKE
scheme and H, G1 and G2 are any hash functions. For any (classical or quantum)
adversary A, there exists a (classical or quantum) adversary B such that

AdvCR
mKEM(A) ≤ AdvCR

H (B).

From Diffie-Hellman. Further, we consider the mKEM obtained by encrypting
the same random key to all recipients using the Diffie-Hellman based mPKE
[29, 36]. Roughly, the mPKE encrypts a message to all recipients using the
ElGamal encryption and a DEM (a construction also known as the DHIES). The
efficiency gain comes from the fact that the same randomness for the ElGamal
ciphertext can be used for all recipients. To get mKEM, we encrypt a random
message m and compute the key as a hash of (m,Y ) (with an appropriate label
for domain separation), where Y is the ElGamal randomness. Including Y is
crucial for collision resistance.9 The pseudocode of the construction is in Fig. 9.

Collision resistance of the DH-based mKEM relies on the collision resistance
of H and the DEM scheme. The latter roughly means that the DEM’s decryption
function is collision resistance. Formally, we define it as follows.
Definition 9. The advantage of an adversary A against collision resistance of
DEM = (E,D) is defined as

AdvCR
DEM(A) = Pr

[
c 6= c′ ∧

D(k, c) = D(k, c′) 6= ⊥

∣∣∣∣ (k, c, c′)← A()
]
.

9 Without this, the adversary can easily create a collision by encrypting the same
message m with two different randomness values y and y′.
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Algorithm BB-mmPKE[mKEM,DEM]

mmSetup()
return mKEM.mSetup()

mmKGen(pp)
return
mKEM.mKGen(pp)

mmEnc(pp, pk1, . . . , pkn,m1, . . . ,mn)
i← 1
~ctx← ()

while i ≤ n do
j ← i
while j ≤ n ∧mi = mj do j++
~pk← (pki, . . . , pkj−1)
(C, k)← mKEM.mEncaps(pp, ~pk)
~ctx +← (C,DEM.E(k,mi), j)
i← j

return ~ctx

mExt(pp, ~ctx, i)
for (C, ctx, j) ∈ ~ctx do

if i < j then
c← mKEM.mExt(pp, C, j − i)
req c 6= ⊥
return (c, ctx)

return ⊥

mDec(pp, (c, ctx), sk)
k ← mKEM.mDecaps(pp, c, sk)
req k 6= ⊥
return DEM.D(k, ctx)

Fig. 10: The construction of mmPKE from mKEM and DEM.

A collision resistant DEM can be constructed from any deterministic DEM
(note that security of our mKEM construction requires only one-time security of
the DEM, so it can be deterministic). In particular, let DEM be deterministic.
To get a collision-resistant DEM, we add an extra check at the end of DEM’s
decryption algorithm: we re-encrypt the message and output ⊥ if the re-encryption
does not match the original ciphertext.

In Appendix B.3 we show that the DH-based mKEM is collision resistance
both in the classical and quantum settings.

6 Two mmPKE Constructions

Finally, we describe how to combine an mKEM and a DEM to built secure
mmPKE. Our results hold for both classical and quantum adversaries. Addition-
ally, we present a construction optimized for very short messages (i.e. messages
as long as blocks of the DEM), which can be useful in applications such as Secure
Group Messaging (SGM). Both constructions leak individual message length as
well as whether two consecutive messages in the message vector are identical.
Note that this leakage is sufficient for applications such as group messaging [3].
We compare the two constructions for short messages in Appendix B.7

Remark 3. For simplicity, the constructions in this section collect all consecutive
occurrences of a message in the encrypted vector, and not all occurrences overall.
Therefore they are more efficient, if the input vectors are sorted.

6.1 A Generic Construction of mmPKE from mKEM

The proof of the following theorem can be found in Appendix B.4.

Theorem 6. Let mKEM and DEM be an mKEM and a DEM schemes, and
let mmPKE = BB-mmPKE[mKEM,DEM] be defined as in Fig. 10. Further, let
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Algorithm Opt-mmPKE[mKEM,DEM, G, g, p,H]

mmSetup()
return mKEM.mSetup()

mmKGen(pp)
x←$ Zp
(pk, sk)← mKEM.mKGen(pp)
return ((gx, pk), (x, sk))

mmExt(pp, (~C, ctx1, . . . , ctxn, Y ), i)
for (C, j) ∈ ~C do

if i < j then
c← mKEM.mExt(pp, C, j − i)
req c 6= ⊥
return (c, ctxi, Y, i)

return ⊥

mmEnc(pp, (X1, pk1), . . . , (Xn, pkn),m1, . . . ,mn)
y ←$ Zp; (i, ~C)← (1, ())
while i ≤ n do

j ← max{j : mi = mj}
(C, kmkem)← mKEM.mEncaps(pp, pki, . . . , pkj−1)
~C +← (C, j)
for j′ ∈ [i, j − 1] do

kdh,j′ ← H((Xj′)y, Xj′ , j′)
ctxj′ ← DEM.E(G(kdh,j′ , kmkem),mi)

i← j
return (~C, ctx1, . . . , ctxn, g

y)

mmDec(pp, (c, ctx, Y, j), (x, sk))
kmkem ← mKEM.mDecaps(pp, c, sk)
req kmkem 6= ⊥
return DEM.D(G(kmkem,H(Y x, gx, j)), ctx)

Fig. 11: The optimized construction of mmPKE. H and G are hash functions
modeled as random oracles.

leak(~m) := ({i : ~m[i] = ~m[i + 1]}, |~m[1]|, . . . , |~m[n]|). For any integer N and
for any (classical or quantum) adversary A, there exist (classical or quantum)
adversaries B1 to B4 such that

AdvmmIND-CCA
mmPKE,N,leak(A) ≤ 2n ·AdvmIND-CCA

mKEM,N (B1) + n ·AdvOT-IND-CCA
DEM (B2) and

AdvmmIND-RCCA
mmPKE,N,leak(A) ≤ 2n ·AdvmIND-RCCA

mKEM,N (B3) + n ·AdvOT-IND-RCCA
DEM (B4),

where n is (an upper bound on) the number of recipients of the challenge vector.10

Additionally, if mKEM is δ1-correct and DEM is δ2-correct, then mmPKE is
δ-correct with δ(n) ≤ n(δ1(n) + δ2(n)).

6.2 An Optimized Construction

For long messages, the mKEM/DEM approach as used in our generic construction
is very efficient. However, if messages are as short as the blocksize of the DEM,
then we can optimize the construction by directly encrypting all messages in
the DEM instead of encrypting keys and then including separate encryptions for
each message. Specifically, we instantiate the classically secure mKEM with an
mmPKE based on the Hashed ElGamal encryption scheme (also called DHIES
in e.g. [1]) from [36] together with a post-quantum secure mKEM. The resulting
mmPKE is described in Fig. 11.

Remark 4 (Values in the hash). In our construction in Fig. 11 the DEM key kj is
computed as H((Xj)y, Xj , j). Including Xj enables a tighter reduction to DSDH.
10 The bound is in fact slightly tighter — the factor by the mIND-CCA and mIND-RCCA

advantages can be replaced by twice the number of different messages in an encrypted
message vector (i.e., the number of mKEM instances used in a single encryption).
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Including j is necessary to assume only one-time security of DEM (which means
that it can be deterministic). Indeed, consider our scheme modified so that j is
not hashed. Now if a public key Xj is a receiver of two messages ~m[i] and ~m[i′]
in one vector, then the DEM keys for ~m[i] and ~m[i′] are the same, which requires
multi-message security.

The following theorem formalizes security of Opt-mmPKE. Due to space
constraints, we defer the proof to Appendices B.5 and B.6.

Theorem 7. Let mKEM, DEM and H be an mKEM, a DEM and a hash func-
tion. Let G be a group of order p, generated by g. Further, let mmPKE =
Opt-mmPKE[mKEM,DEM, G, g, p,H] be defined as in Fig. 11. Moreover, let
leak(~m) := ({i : ~m[i] = ~m[i + 1]}, |~m[1]|, . . . , |~m[n]|). For any integer N and
for any (classical or quantum) adversary A, there exist (classical or quantum)
adversaries B1 to B8 such that

AdvmmIND-CCA
mmPKE,N,leak(A) ≤ 2n ·AdvmIND-CCA

mKEM,N (B1) + n ·AdvIND-CCA
DEM (B2) + 2 · q

2
h

2κ and

AdvmmIND-RCCA
mmPKE,N,leak(A) ≤ 2n ·AdvmIND-RCCA

mKEM,N (B4) + n ·AdvIND-RCCA
DEM (B5) and

AdvmmIND-CCA
mmPKE,N,leak(A) ≤ 2n · EG + n ·AdvIND-CCA

DEM (B6) + 2n ·AdvCR
mKEM(B7) and

AdvmmIND-RCCA
mmPKE,N,leak(A) ≤ 2n · EG + n ·AdvIND-RCCA

DEM (B8),

where EG =
(
e2qc ·AdvDSDH

G,g,p (B3) + qd1 +2qh
p

)
, the hash functions H and G are

modeled as random oracles, e is the Euler number, n is (an upper bound on) the
number of recipients of the challenge vector, and qc, qd1 and qh are (upper bounds
on) the number of queries to the oracle Cor, the oracle Dec1 and the random
oracle, respectively. Additionally, if mPKE is δ1 correct and DEM is δ2-correct,
then mmPKE is δ-correct with δ(n) ≤ n(δ1(n) + δ2(n)).

7 Implementation and Benchmarks

In order to evaluate the computational performance of the constructions proposed
in this paper, we implement the core underlying primitive, the mIND-CCA-secure
mKEM based on the NIST PQC finalist Kyber. More specifically, we adapt the
code optimized for 64-bit Intel platforms featuring the AVX2 vector instruction
set by the Kyber submission team11.

Benchmarks. We benchmark our Kyber-mKEM implementation on a single core
of an Intel Core i7-4770K (Haswell) CPU with HT and TurboBoost turned off.
All code is compiled with clang-11.0.1 and optimization flags -mavx2 -mbmi2
-mpopcnt -march=native -mtune=native -O3 -fomit-frame-pointer. We re-
port median cycle counts for key generation and decapsulation of a single user
over 1000 experiments. For encapsulation, we report median cycle counts over
11 See https://github.com/pq-crystals/kyber/tree/master/avx2
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1000 experiments for each size of the set of recipients; for these measurements we
use the monolithic API (see Appendix C). We compare the mKEM cycle counts
to a naive solution that encapsulates to each user individually using unmodified
Kyber. For these benchmarks of Kyber we again report median cycle counts for a
single key generation and decapsulation over 1000 experiments. For encapsulation
we benchmark a single-recipient encapsulation operation and multiply this cycle
count by the number of recipients. The results are collected in Tables 1, 3 and 4.

Note that our comparison is not exactly comparing apples to apples for two
reasons: First, the optimized mKEM approach makes sure that all participants
have the same shared key, while with the naive solution is an mmKEM, i.e., the
encapsulating party has individual keys shared with each of the other participants.
If the former is required, the naive approach would need to use the individual
shared keys to encrypt and authenticate the joint group key. Second, when
reporting the public-key size for the mKEM solution we omit the 32 bytes for
the public seed needed to derive the matrix A, while in unmodified Kyber these
32 bytes are part of the public key. One could decide to save those 32 bytes also
in Kyber and handle the seed on application level like for the mKEM.

As expected, the cycle counts for key generation and decapsulation increase
because of the additional effort required to achieve adaptive security. However,
we see that already for rather small sets of recipients the cycle counts of encap-
sulation decrease significantly. This is because the most expensive operation of
computing the first ciphertext component is amortized across recipients. Even
more importantly, we see a massive decrease in ciphertext size reaching a factor
of about 4.8 at security level 5 for 1000 recipients.

n Kyber mKEM Naive (n× Kyber)
cycles bytes cycles bytes

1 gen: 82772 gen: 69292
dec: 135544 dec: 69756

1 enc: 104452 pk: 1568 enc: 88740 pk: 1568
ct: 3137 ct: 1568

2 enc: 147716 pk: 3136 enc: 177480 pk: 3136
ct: 3458 ct: 3136

10 enc: 512928 pk: 15680 enc: 887400 pk: 15680
ct: 6026 ct: 15680

100 enc: 4929876 pk: 156800 enc: 8874000 pk: 156800
ct: 34916 ct: 156800

1000 enc: 48633528 pk: 1568000 enc: 88740000 pk: 1568000
ct: 323816 ct: 1568000

Table 1: Intel Haswell cycle counts and transmitted bytes for Kyber mKEM and
naive n× application of Kyber at NIST security level 5 (Kyber1024)
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Game OT-IND-CCA, OT-IND-RCCA

ExpOT-IND-ATK
DEM,b (A = (A1,A2)), ATK ∈ {CCA,RCCA}

k ←$ {0, 1}κ
(m∗0,m∗1, st)← ADec1

1 ()
req |m∗0| = |m∗1|
c∗ ← E(k,m∗b)
return ADecATK

2
2 (c∗, st)

Oracle Dec1(c)

return D(k, c)

Oracle DecmmIND-CCA
2 (c)

req c 6= c∗

return D(k, c)

Oracle DecmmIND-RCCA
2 (c)

m← D(k, c)
if m ∈ {m∗0,m∗1} then

return ’test’
else return m

Fig. 12: The One-Time CCA and RCCA security games for DEM.

A Additional Preliminaries

A.1 Assumptions

We recall a variant of the computational Diffie-Hellman assumption from [18]
used in our optimized construction in Section 6.

Definition 10 (Double Strong Diffie-Hellman Assumption). Let G =
(G, p, g) be a cyclic group of prime order p with generator g. We define the
advantage of an algorithm A in solving the Double-Sided Strong Diffie-Hellman
problem(DSDH) with respect to G as

AdvDSDH
G (A) =

[
Z = gxy

∣∣∣∣ x, y ←$ Z2
p

Z ←$ AOx(·,·),Oy(·,·)(G, p, g, gx, gy),

]
where Ox,Oy are oracles which on input U, V output 1, iff Ux = V or Uy = V
respectively. The probability is taken over the random coins of the group generator,
the choice of x and y and the adversaries random coins.

A.2 Data Encapsulation Mechanisms

A Data encapsulation mechanism (DEM) scheme consists of an encryption
algorithm E(k,m)→ c and a decryption algorithm D(k, c)→ m. We define the
one-time (R)CCA security for DEMs. We note that one-time security can also
be achieved by more efficient deterministic schemes.

Definition 11. Let DEM be a DEM scheme. For ATK ∈ {CCA,RCCA}, we
define the advantage of an adversary A against the ATK ∈ {OT-IND-ATK}
security of DEM as

AdvATK
DEM(A) =

∣∣∣Pr[ExpOT-IND-ATK
DEM,1 (A)⇒ 1]− Pr[ExpOT-IND-ATK

DEM,0 (A)⇒ 1]
∣∣∣ ,

where ExpOT-IND-ATK
DEM,b (A) is defined in Fig. 12.
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A.3 Correctness Notions

Here we gather the formal correctness notions for the various batched KEM/PKE
notions in this work.

mmPKE Correctness. Let δ : N→ [0, 1]. An mmPKE scheme mmPKE is δ-correct,
if for all n ∈ N and message vectors ~m,

Pr

 ∃i ∈ [N ] :
mmDec(pp, ski, ci) 6= ~m[i]

∣∣∣∣∣∣∣∣
pp←$ mmSetup

(pki, ski)←$ mmKGen(pp)∀i ∈ [N ]
~m←$ MN , C ←$ mmEnc(pp, ~pk, ~m),

ci ← mmExt(pp, C, i)

 ≤ δ(n)

mKEM Correctness. Let the real valued function δ : N → [0, 1]. An mKEM is
δ-correct, if every recipient can decapsulate the correct key with high probability.
Formally, we require that for all n ∈ N,

Pr

 ∃i ∈ [n] :
mDecaps(pp, ski, ci) 6= k

∣∣∣∣∣∣∣∣
pp←$ mSetup()

(pki, ski)←$ mKGen(pp) for i ∈ [n]
(C, k)←$ mEncaps(pp, pk1, . . . , pkn),

ci ← mExt(pp, C, i) for i ∈ [n]

 ≤ δ(n)

We will omit the dependence of δ on n if it is clear from context.

mPKE Correctness. An mPKE scheme mPKE is δ-correct, if for each message m,

E
pp∈mSetup
pk∈mKGen

max
m∈M

Pr

m 6= mDec(sk, (ci, cd))

∣∣∣∣∣∣
r ←$ {0, 1}κ

ci ← mEnci(pp, r),
cd ← mEncd(pp, pk,m, r)

 ≤ δ.
B Deferred Proofs

B.1 Security Proof for the mPKE Compiler

Theorem 1. Let mPKE = Comp[mPKE,H], where mPKE is an mPKE with a
group operation over the space of public keys and H is a hash function, be defined
as in Fig. 5. For any number of recipients N and for any (classical or quantum)
adversary A, there exist (classical or quantum) adversaries B1 and B2 such that

AdvmIND-CPAcorr

mPKE,N (A) ≤ AdvmIND-CPA
mPKE,N (B1) + 2N ·AdvmRND-PK

mPKE (B2),

where H is modeled as a random oracle. Additionally, if mPKE is δ-correct, then
Comp[mPKE,H] is δ-correct as well.

Proof. The classical setting. We define a sequence of game hops transitioning from
the mIND-CPAcorr experiment with the bit b = 0 to the mIND-CPAcorr experiment
with b = 1.
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Game G0. This is the experiment with b = 0.

Game G1. This game hop changes how the key N pairs are generated by the
challenger. In particular, in G1 both the left and the right key pairs are generated
using mPKE.mKGen, and H is programmed to the sum of public keys afterwards.
Using the standard hybrid argument and the straightforward reduction, we get
the following lemma

Lemma 2. For any adversary A, there exists a reduction B2 such that

Pr [G1(A)⇒ 1]− Pr [G0(A)⇒ 1] ≤ N ·AdvmRND-PK
mPKE (B2).

Game G2. This game hop switchesm∗0 tom∗1 in the first invocation of mPKE.mEnc
executed when computing the challenge ciphertext. More precisely, in G2, the
challenge ciphertext is generated as follows.

(rfirst, rsecond)←$ {0, 1}2κ

(ci
first, c

i
second)← (mPKE.mEnci(pp; rfirst),mPKE.mEnci(pp; rsecond))

for j ∈ [n] do
(pkleft,i∗

j
, si∗

j
)← pki∗

j
// pki∗

j
was generated at the beginning of the experiment

pkright,i∗
j
← H(s)− pkleft,i∗

j

swapCtxj ←$ {0, 1}
if swapCtx = 0 then (pkfirst,i∗

j
, pksecond,i∗

j
)← (pkleft,i∗

j
, pkright,i∗

j
)

else (pkfirst,i∗
j
, pksecond,i∗

j
)← (pkright,i∗

j
, pkleft,i∗

j
)

cd
first,j ← mPKE.mEncd(pp, pkfirst,i∗

j
,m∗1, rfirst)

cd
second,j ← mPKE.mEncd(pp, pksecond,i∗

j
,m∗0, rsecond) cd

j ← (cd
first,j , c

d
second,j , swapCtxj)

We next show that games 1 and 2 are indistnguishable, assuming that mPKE is
mIND-CPA secure (without corruptions), as formalized by the following lemma.

Lemma 3. For any adversary A, there exists a reduction B1 such that

Pr [G2(A)⇒ 1]− Pr [G1(A)⇒ 1] ≤ AdvmIND-CPA
mPKE,N (B1).

Proof: Let A be any adversary. The reduction B1 is described in detail in Fig. 13.

At a high level, B1 emulates for A the two instances of mPKE, one with the
help of its challenger and one by running it itself. That is, each recipient i ∈ [N ]
has a left and a right mPKE key. One of these keys is the i-th key received from
B1’s challenger and the other is generated by B1. To decide which is which, B1
tosses a random coin biti: if biti = 0, the left key is taken from the challenger,
and biti = 1, it is the right key. This way, B1 can handle corruptions: if the
i-th recipient is corrupted, B1 outputs the mPKE key it generated and the bit
swapPki = 1 − biti. This means that B1 pretends that the bit swapPki chosen
by the i-th execution of the key generation at the beginning of the emulated
mIND-CPAcorr experiment was swapPki = biti.

Further, B1 computes the challenge ciphertext as follows. Recall that the
encryption algorithm of the compiled scheme runs mPKE encryption twice. For
the first invocation, B1 uses its challenger with m∗0 (as encrypted in G1) and
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Reduction B1

(A1,A2)← A
Receive pp∗ and pk∗1, . . . , pk∗N from the challenger.
for i ∈ [N ] do

(pki, ski)← mPKE.mKGen(pp∗)
si ←$ {0, 1}κ
biti ←$ {0, 1}
if biti = 0 then (pkleft,i, pkright,i)← (pk∗i , pki)
else (pkright,i, pkleft,i)← (pk∗i , pki)
si ←$ {0, 1}κ
program H(si)← pkreal,i + pkfake,i // Programming was introduced in G1 and is also done
in G2.

Cor← ∅
((i∗1, . . . , i∗n),m∗0,m∗1, st)← ACor

1 (pp∗, (pkleft,1, s1), . . . , (pkleft,N , sN ))

Send (i∗1, . . . , i∗n), m∗0 and m∗1 to the challenger and receive (ci
first, c

d
first,1, . . . , c

d
first,n)

r ←$ {0, 1}κ
ci

second ← mPKE.mEnci(pp∗; r)
for j ∈ [n] do

cd
second,j ← mPKE.mEncd(pp∗, pksecond,j ,m

∗
0, r)

swapCtxj ← biti∗
j

if swapCtx = 0 then (pkfirst,j , pksecond,j)← (pkleft,i∗
j
, pkright,i∗

j
)

else (pkfirst,j , pksecond,j)← (pkright,i∗
j
, pkleft,i∗

j
)

cd
first ← mPKE.mEncd(pp, pkfirst,m, rfirst)
cd

second ← mPKE.mEncd(pp, pksecond,m, rsecond) cd
j ← (cd

first,j , c
d
second,j , swapCtxj)

b′ ← ACor
2 (st, ci, cd

1, . . . , c
d
n)

req {i∗1, i∗2, . . . , i∗n} ∩ Cor = ∅
return b′

Oracle Cor(i)

req i ∈ [N ]
Cor +← i
return
(ski, 1− biti)

Fig. 13: The reduction B1 using a distinguisher A between G1 and G2 to break
the mIND-CPA security of mPKE. The parts where B1’s experiment differs from
mIND-CPA are marked by boxes.

m∗1 (as encrypted in G2), while for the second it encrypts m∗0 itself (as in both
games). For this to work, we need that for each recipient j ∈ [n] of the challenge,
the public key used in the first invocation comes from B1’s challenger. Therefore,
B1 sets the bit swapCtxj to biti∗j , i.e., the bit it chose for the j-th recipient during
key generation.

Observe that for each recipient i ∈ [N ], the only part of A’s view that
depends on biti are the bits swapPki outputted in case i is corrupted and swapCtxj
outputted in case i receives the challenge. Since these cases are exclusive, swapPki
or swapCtxj is distributed uniformly at random in A’s experiment. �

Game G3. The game is the same as G2, except the challenger encrypts m∗1.
We next show that games 2 and 3 are indistnguishable, assuming that mPKE is
mIND-CPA secure (without corruptions), as formalized by the following lemma.
Lemma 4. For any adversary A, there exists a reduction B1 such that

Pr [G3(A)⇒ 1]− Pr [G2(A)⇒ 1] ≤ AdvmIND-CPA
mPKE,N (B1).

Proof: The reduction B1 is analogous to the one used in the proof of the previous
claim. The only difference is that the challenge is embedded in the second
invocation of mPKE. �
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Game G4. The game is the same as G3, except the key pairs are generated as
in the original mPKE scheme. This is the mIND-CPA experiment with b = 1. By
the standard hybrid argument, we get the following lemma

Lemma 5. For any adversary A, there exists a reduction B2 such that

Pr [G4(A)⇒ 1]− Pr [G3(A)⇒ 1] ≤ N ·AdvmRND-PK
mPKE (B2).

Combining the four lemmas and applying the union bound concludes the proof.

The quantum setting. Note that although the random oracle is programmed, all
programmed values are fixed a priori and are independent of the adversary’s
behavior. Therefore, to lift the previous proof to the quantum setting, we can
simply simulate the necessary quantum random oracle by defining a programmed
random oracle that answers with the programmed values, if such a point is
queried, or with an internal random oracle if no programmed point is queried.
Since everything is committed from the beginning, giving the quantum adversary
quantum access to this oracle is indistinguishable from a regular quantum random
oracle and the same reduction strategy works. ut

B.2 Security Proofs for the Combiner

In this section, we prove the two security statements for the mKEM combiner.
We start with the more more difficult proof of Theorem 4.

Theorem 4. Let mKEM = Comb[mKEM1,mKEM2,PRF], where mKEM1 and
mKEM2 are some mKEM schemes and PRF is a PRF, be defined as in Fig. 8. Let
dual(PRF) denote the PRF obtained by swapping the input and key of PRF, i.e.,
dual(PRF)(k, x) = PRF(x, k). For any N ∈ N and for any (classical or quantum)
adversary A, there exist (classical or quantum) adversaries B1 to B3 and B′1 to
B′3 such that

AdvmIND-CCA
mKEM,N (A) ≤ 2 ·AdvmIND-CCA

mKEM1,N (B1) + AdvPRF
PRF(B2) + 2N ·AdvCR

mKEM2(B3) and
AdvmIND-CCA

mKEM,N (A) ≤ 2 ·AdvmIND-CCA
mKEM2,N (B′1) + AdvPRF

dual(PRF)(B′2) + 2N ·AdvCR
mKEM1(B′3).

Additionally, if mKEM1 is δ1-correct and mKEM2 is δ2-correct, then mKEM is
(δ1 + δ2)-correct.

Proof. The correctness bound follows directly from the fact that if one of the two
mKEMs suffers a decapsulation error, then the combined scheme does so as well.

We prove only the first statement for the case that mKEM1 is secure. The
second proof is analogous. Our proof works for both the classical and the quantum
setting (it is a straightline black-box reduction in the standard model).

We define a sequence of games transitioning from G0, which is the real
mIND-CCA experiment with the bit b = 0, to G5, which is the ideal experiment
with b = 1. The games are defined in Fig. 14.
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Game mIND-CCA

pp1← mKEM1.mSetup()
pp2← mKEM2.mSetup()
for i ∈ [N ] do

(pk1i, sk1i)← mKEM1.mKGen(pp1)
(pk2i, sk2i)← mKEM2.mKGen(pp2)
pki ← (pk1i, pk2i)
ski ← (sk1i, sk2i)

Cor← ∅
((i∗1, . . . , i∗n), st)← ACor,Dec1

1 (pp, pk1, pk2, . . . , pkN )
(C1∗, k1∗0)← mKEM1.mEncaps(pp1, pk1i∗1 , . . . , pk1i∗n)
(C2∗, k2∗0)← mKEM2.mEncaps(pp2, pk2i∗1 , . . . , pk2i∗n)
C∗ ← (C1∗, C2∗)
k∗0 ← PRF(k1∗0, k2∗0) // G0

k1∗1 ←$ {0, 1}κ // G1, G2, G3, G4
k∗0 ← PRF(k1∗1, k2∗0)

k∗1 ←$ K // G3, G4, G5

b′ ← ACor,Dec2
2 (st, C∗, k∗0)

req {i∗1, i∗2, . . . , i∗n} ∩ Cor = ∅
return b′

Oracle Deccca
2 (i, c = (c1, c2))

req i ∈ [N ]
req ∀j s.t. i∗j = i : c 6= mExt(C∗, j)
k1← mKEM1.mDecaps(pp1, c1, sk1i)
k2← mKEM2.mDecaps(pp2, c2, sk2i)
if k1 = ⊥ ∨ k2 = ⊥ then return ⊥
if ∃j : i∗j = i ∧ c2 6= mKEM2.mExt(C2∗, j) then

req k2 6= k2∗0 // G2, G3

if k1 = k1∗0 then // G1, G2, G3 G4
return PRF(k1∗1, k2)

return PRF(k1, k2)

Fig. 14: The games for the proof of Theorem 4.

Game G1. The game hop replaces the key k1∗0 encapsulated by mKEM1 when
the challenge is computed by a random and independent k1∗1 in all inputs to PRF.
Let A be any adversary. We next construct a reduction B1 such that

Pr [G1(A)⇒ 1]− Pr [G0(A)⇒ 1] ≤ AdvmIND-CCA
mKEM1,N (B1).

B1 simply runs A and evaluates mKEM2 itself. Moreover, it evaluates mKEM1
using its oracles. Let k∗ be B1’s challenge key. B1 computes A’s challenge key
as PRF(k∗, k2∗0), where k2∗0 is generated by B1. If A sends (c1, c2) to the de-
capsulation oracle such that B1 cannot query c1 to its oracle, then B1 outputs
PRF(k∗, k2), where k2 is computed by decapsulating c2.

If B1 is in the mIND-CCA experiment with the bit b = 0, then it uses the real
key k∗ = k1∗0 as the PRF input, so the experiment is the same as G0. Now assume
b = 1. Then B1 answers all calls to the decapsulation oracle that contaion c2
with k∗ = k1∗1, which results in an independent and random key for A. Therefore,
B1 simulates G1.

Game G2. The game hop adds an additional check enforcing that if the adversary
inputs a ciphertext with a mKEM2 component c2 to the decapsulation oracle
which is not an extraction of the mKEM2 component of the challenge, then
mKEM2 decapsulates a different key than the mKEM2 challenge key k2∗0.

We notice that G1 and G2 are identical unless there is a collision on one
of the N instances of mKEM2 as defined in Definition 8. Therefore, for the
straightforward reduction B2, we have

Pr [G2(A)⇒ 1]− Pr [G1(A)⇒ 1] ≤ N ·AdvCR
mKEM2(B2).
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Game G3. The game hop replaces the challenge key by k∗1 . For any adversary A
there exists a reduction B3 such that

Pr [G3(A)⇒ 1]− Pr [G2(A)⇒ 1] ≤ AdvPRF
PRF(B2).

Observe that k1∗1 is independent of the experiment apart from the PRF evaluations.
Therefore, B3 can simply run A, embed its challenge in A’s challenge key and
answer A’s decapsulation queries as follows: If k1 = k1∗0 (which B3 can check,
because it evaluates mKEMs itself), then it uses the evaluation oracle for the
PRF and computes the rest itself. Else, it computes everything itself. This works
because the additional check introduced in G2 prevents A from making B3 trigger
a trivial win in the PRF game.

Games G4 and G5. The last two hops to G4 and to G5 revert the changes made
in G2 and G1, respectively. The reductions B3 and B4 are analogous. ut

that the mKEM combiner from Section 3.1 outputs an RCCA secure mKEM
assuming (only) that one of the input mKEMs is RCCA secure.

Theorem 3. Let mKEM = Comb[mKEM1,mKEM2,PRF], where mKEM1 and
mKEM2 are some mKEM schemes and PRF is a PRF, be defined as in Fig. 8. Let
dual(PRF) denote the PRF obtained by swapping the input and key of PRF, i.e.,
dual(PRF)(k, x) = PRF(x, k). For any N ∈ N and for any (classical or quantum)
adversary A, there exist (classical or quantum) adversaries B1, B2, B′1, B′2 s.t.

AdvmIND-RCCA
mKEM,N (A) ≤ 2 ·AdvmIND-RCCA

mKEM1,N (B1) + AdvPRF
PRF(B2) and

AdvmIND-RCCA
mKEM,N (A) ≤ 2 ·AdvmIND-RCCA

mKEM2,N (B′1) + AdvPRF
dual(PRF)(B′2).

Additionally, if mKEM1 is δ1-correct and mKEM2 is δ2-correct, then mKEM is
(δ1 + δ2)-correct.

Proof. The proof is almost identical to the proof Theorem 4. We only observe
that RCCA security does not rely on collision resistance, since all collisions result
in the decyrption oracle returning ’test’.

B.3 Proofs of mKEM Collision Resistance

Theorem 5. Let mKEM = FO[mPKE,H,G1,G2], where mPKE is any mPKE
scheme and H, G1 and G2 are any hash functions. For any (classical or quantum)
adversary A, there exists a (classical or quantum) adversary B such that

AdvCR
mKEM(A) ≤ AdvCR

H (B).

Proof. Let A be any adversary who outputs c and c′ in the CR experiment with
mKEM. Assume A wins, i.e., c 6= c′, k = k′ 6= ⊥, where k and k′ be the key
decapsulated from c and c′. We next use these facts to find a collision in H.

Let (pk, sk) and pp be the mKEM key pair and the public parameters chosen
in the CR experiment. Since k 6= ⊥, all mKEM decapsulation checks pass, i.e.,
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1. m = mPKE.mDec(pp, sk, c) 6= ⊥,
2. k = H(m),
3. c = (ci, cd) and ci = mPKE.mEnci(pp; G1(m)),
4. c = (ci, cd) and cd = mPKE.mEncd(pp, pk,m,G1(m); G2(m)).

Since k′ 6= ⊥, analogous equations hold for c′ = (ci′, cd′) and the decrypted
message m′. Since c 6= c′, we have either ci 6= ci′ or cd 6= cd′. We claim that
in both cases, this means that f(m) 6= f(m′) for some deterministic function
f . Indeed, in the first case, f = mPKE.mEnci (by point 3.) and in the second
case, f = mPKE.mEncd (by point 4.). Therefore, m 6= m′. Moreover, since
H(m) = k = k′ = H(m′) (by point 2.), we get a collision on H. ut

Next, we show that DH-based mKEM is collision resistant both in the classical
and in the quantum setting. We note that we make no statement about the
scheme’s (R)CCA security which doesn’t hold in the quantum setting. In this
setting, the scheme is only collision resistant. Note also that for quantum security,
we need H and DEM to be collision resistant against quantum adversaries.

Theorem 8. Let mKEM = DH-mKEM[G, g, p,H,DEM] be as defined in Fig. 9,
where G is a group of prime order p generated by g, H is a hash function and
DEM is a DEM scheme. For any (classical or quantum) adversary A, there exist
(classical or quantum) adversaries B1 and B2 such that

AdvCR
mKEM(A) ≤ AdvCR

H (B1) + AdvCR
DEM(B2).

Proof. Let A be any adversary who outputs c and c′ in the CR experiment with
mKEM. Let k and k′ be the decapsulated keys. Assume A wins, i.e., c 6= c′, k = k′

and k, k′ 6= ⊥.
Let (gx, x) be the key pair generated in the CR experiment. We use the

following notation: c = (Y, ctx), c′ = (Y ′, ctx′), kdem = H(’dh-key’, (Y )x, Y ) and
kdem′ = H(’dh-key’, (Y ′)x, Y ′).

Since k 6= ⊥, we have m = D(kdem, ctx) 6= ⊥ and k = H(’output-key’,m, Y ).
Since k′ 6= ⊥, we have m′ = D(kdem′, ctx′) 6= ⊥ and k′ = H(’output-key’,m′, Y ′).

If (m,Y ) 6= (m′, Y ′), then an adversary B1 can find collisions in H. Else,
m = m′ and Y = Y ′. The latter implies that (Y )x = (Y ′)x so kdem = kdem′.
Therefore, B2 wins in the CR experiment with DEM using kdem, ctx and ctx′. ut

B.4 Security Proof for the Modular mmPKE Construction

Theorem 6. Let mKEM and DEM be an mKEM and a DEM schemes, and
let mmPKE = BB-mmPKE[mKEM,DEM] be defined as in Fig. 10. Further, let
leak(~m) := ({i : ~m[i] = ~m[i + 1]}, |~m[1]|, . . . , |~m[n]|). For any integer N and
for any (classical or quantum) adversary A, there exist (classical or quantum)
adversaries B1 to B4 such that

AdvmmIND-CCA
mmPKE,N,leak(A) ≤ 2n ·AdvmIND-CCA

mKEM,N (B1) + n ·AdvOT-IND-CCA
DEM (B2) and

AdvmmIND-RCCA
mmPKE,N,leak(A) ≤ 2n ·AdvmIND-RCCA

mKEM,N (B3) + n ·AdvOT-IND-RCCA
DEM (B4),
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where n is (an upper bound on) the number of recipients of the challenge vector.12

Additionally, if mKEM is δ1-correct and DEM is δ2-correct, then mmPKE is
δ-correct with δ(n) ≤ n(δ1(n) + δ2(n)).

Proof. The correctness statement follows directly from the fact that a decapsu-
lation or decryption failure at one position directly causes a decryption failure
of the whole mmPKE. Since both building blocks are repeated up to n times, a
union-bound yields the claimed bound.

We next consider security. For simplicity, we only consider classical adversaries.
Note however, that the reduction is straightline, black-box and in the standard
model. Therefore adapting it to the post-quantum setting is straightforward, as
long as the underlying mKEM and DEM are post-quantum secure.

Recall that in the mmIND-CCA (resp., mmIND-RCCA) game the challenge ci-
phertext has the form ((C1, ctx1, j1), . . . , (C`, ctx`, j`)). Observe that leak(~m∗0) =
leak(~m∗1) ensures that ` as well as j1, . . . , j` are the same when ~m∗0 is encrypted
and when ~m∗1 is encrypted.

This means that we can define the following sequence of 3n game hops
transitioning from the mmIND-CCA (resp., mmIND-RCCA) experiment with b = 0
to the experiment with b = 1. Each hop modifies one component (Ci, ctxi, ji).
In the first hop, the key used to generate ctx1 is switched from the key k1
encapsulated in C1 to an independent key. In the second hop, ctx1 is switched
from an encryption of ~m∗0[1] to an encryption of ~m∗1[1]. In the third hop, the
key used to generate ctx1 is switched back to k1. The next 3n− 3 hops modify
(C2, ctx2, j2), . . . , (C`, ctx`, j`) in the analogous way. Note that the last game is
the mmIND-CCA (resp., mmIND-RCCA) experiment with b = 1.

Observe that the above sketch does not quite work, because if ~m∗0[1] = ~m∗1[1],
then the adversary is allowed to corrupt one of its receivers. This way it learns
the real DEM key, which allows to distinguish between the first and the second
game. To fix this, we modify all of the game hops so that they do not switch
anything if ~m∗0[ji] = ~m∗1[ji] (note that there is no need to switch from ~m∗0[ji] to
~m∗1[ji] in this case).

Indistinguishability of the first and the second, as well as the third and the
fourth games follows from mIND-CCA (resp., mmIND-RCCA) security of mKEM.
Indistinguishability of the second and the third game follows from OT-IND-CCA
(resp., OT-IND-RCCA) security of DEM. (Each individual game hop is tight.) ut

B.5 The First and Second Part of Theorem 7

Proof (of the first statement). We focus on classical adversaries and note that
the proof can be adapted to the quantum setting in the straightforward way. We
define a standard sequence of game hops transitioning from the mmIND-CCA
experiment with b = 0 to the mmIND-CCA experiment with b = 1. Each hop
modifies only how the challenge ciphertext is generated.
12 The bound is in fact slightly tighter — the factor by the mIND-CCA and mIND-RCCA

advantages can be replaced by twice the number of different messages in an encrypted
message vector (i.e., the number of mKEM instances used in a single encryption).
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Game G0. This is the mmIND-CCA experiment with the Opt-mmPKE scheme
and b = 0.
Game G1. The difference from G0 is that each key kmkem used to compute the
challenge encryption of ~m∗0 is random and independent.
Game G2. The difference from G1 is that each key inputted to the DEM is
random and independent instead of being computed as G(kmkem, kdh).
Games G3. The difference from G2 is that the DEM ciphertexts ctx1, . . . , ctxn
are computed by encrypting elements of ~m∗1 instead of elements of ~m∗0.
Game G4. This game hop reverts the change from the first two hops, i.e., the
difference from G3 is that the keys inputted to DEM are G(kmkem, kdh) where
kmkem is outputted by mKEM.

The following lemmas bound the advantage of an adversary A in distin-
guishung each pair of consecutive games.
Lemma 6. For any adversary A, there exists a reduction B1 s.t.

Pr[G1(A) = 1]− Pr[G0(A) = 1] ≤ n ·AdvmIND-CCA
mKEM,N (B1).

Proof: We notice that when the challenge is computed, mKEM is invoked at most
n times (when all elements of ~m∗0 /~m∗1 are different). The claim follows by the
standard hybrid argument. �

Lemma 7. For any adversary A,

Pr[G2(A) = 1]− Pr[G1(A) = 1] ≤ q2
h

2κ .

Proof: For a recipient index j ∈ [n], let kj = G(kmkem,j , kdh,j) be the key inputted
to the j-th instance of DEM when the challenge is computed. Recall that kdh,j =
H(∗, ∗, j). This means that, unless there are collisions on H, kdh,j are distinct.
Moreover, the values kmkem,j are only used in the challenge and are otherwise
random and independent of the rest of the experiment (after the first hop).
Since G is modeled as a random oracle, this means that each kj is random and
independent of the view of A.

Finally, since H is a random oracle with output domain of size 2κ, collisions
on H happen with probability at most q2

h/2κ. �

Lemma 8. For any adversary A, there exists a reduction B2 s.t.

Pr[G3(A) = 1]− Pr[G2(A) = 1] ≤ n ·AdvOT-IND-CCA
DEM (B2).

Proof: Since the DEM keys are random and independent, the claim follows by
the standard hybrid argument. �

Lemma 9. For any adversary A, there exists a reduction B1 s.t.

Pr[G3(A) = 1]− Pr[G2(A) = 1] ≤ n ·AdvmIND-CCA
mKEM,N (B1) + q2

h

2κ .

Proof: The proof is analogous to the proofs of the first two lemmas. �
ut
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B.6 Third and fourth part of Theorem 7

Proof (of the third statement). We focus on the classical case, since the theorem
is trivial in the quantum case (where the DH assumption is false). Recall that the
challenge ciphertext in the mmIND-CCA experiment contains (C1, j1), . . . , (C`, j`),
ctx1, . . . , ctxn and Y . Since leak(~m∗0) = leak(~m∗1), we know that ` as well as
j1, . . . , j` are the same when ~m∗0 is encrypted and when ~m∗1 is encrypted.

The sequence of game hops. We define the following sequence of 7n game hops
transitioning from the mmIND-CCA experiment with b = 0 to the experiment
with b = 1.

Preventing Collisions In the first n game hops, we add an additional check to
the decryption oracle, namely we additionally check if the mKEM part of the
ciphertext encapsulates the same key as one of the first i challenge ciphertext
parts if decryption is queried for one of the first i recipients. Specifically, in
the i-th game, when queried on input pp, (c, ctx∗j , Y ∗, j) where ctx∗j is the j-th
challenge DEM ciphertext and Y ∗ is the DH challenge nonce for some j ≤ i, it
also outputs ⊥, if mKEM.mDecaps(pp, sk, c) = mKEM.mDecaps(pp, sk, c∗j ), where
c∗j is the j-th encapsulation in the challenge ciphertext. This check ensures that
the adversary can’t trivially decrypt by finding a collision in the (potentially
insecure) mKEM. This is necessary in the next step where we replace the keys
generated by the DH part with random. If the adversary could produce a forgery,
it could use the decryption oracle to detect this switch to random keys. Each of
these hops can be tightly reduced to the collision resistance of mKEM.

Note that if we only consider RCCA security, the first n game hops aren’t
needed. Indeed, the RCCA decryption oracle checks whether the decrypted
message is equal to a challenge message and simply outputs Test in that case, so
such a query doesn’t imply breaking the scheme. So by simply removing the first
and last n game hops and switching all definitions to RCCA security, the proof
works as well and the third statement of the theorem follows.

Switching the keys The goal of the second n hops is to switch the n DH keys kdh,i
used in the encryption of the challenge ciphertext to random keys if the message
vectors differ at the respective position. Since the adversary can’t corrupt these
positions and the keys are unchanged at all other positions, we can make all
these changes via standard hybrids.

In the next n hops, we replace the final DEM key G(kdh,i, ki) by random.
Since kdh,i is already random for all i and G is a random oracle, this is a purely
conceptual change.

In the next n hops, the random values encrypted in ctx1, . . . , ctxn are one by
one switched from ~m∗0[1] to ~m∗1[1]. If the messages were the same, i.e. corruptions
would be possible and we didn’t change the keys to random, this doesn’t change
anything. For positions with different messages, we can use the security of DEM.
In the final 3n hops revert the first 3n hops, i.e., the final DEM keys are again
computed via G, the keys kdh,1, . . . , kdh,n are replaced by the real DH keys and
we remove the collision check from the decryption oracle.
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The reduction to DEM security. Observe that after the first 3n game hops, the
DEM key G(kdh,i, kmkem) used to generate ctxi is random and independent of
the rest of the experiment if the i-th components of ~m∗0 and ~m∗1 are different.
Therefore, distinguishing between the games i and i + 1 for i ∈ [n, 2n] can be
reduced to breaking OT-IND-CCA (resp., OT-IND-RCCA) security of DEM in the
straightforward way.

The reduction to DSDH. Let G0 and G1 denote the first two games in the sequence,
i.e. in G0 all DH keys are real and in G1, we swap the real DH key for a random
one if ~m0[0] 6= ~m1[0]. We next show that for any adversary A, there exists a
reduction B such that

Pr [G1(A) = 1]− Pr [G0(A) = 1] ≤ e2qc ·AdvDSDH
G,g,p (B) + qd1

p
+ qh

p
. (1)

An analogous reduction can be constructed for the game hops 2n+ 2 to 4n and
5n+ 1 to 6n. Since we make this hop at most 2n times, the bound follows from
the equation. We conclude by proving that Eq. (1) holds.

Observe that G0 and G1 are identical unless ~m∗0[1] 6= ~m∗1[1] and A inputs to
the RO the triple (gxy, gx, 0), where gx is contained in the public key of the
first receiver of the challenge ciphertext and y is the discrete logarithm of the
randomness carrier Y contained in the challenge ciphertext. We call this event
E. We next construct a reduction B which solves DSDH if E and some other
independent events occur. Here, we use that there are no collisions in the mKEM
ciphertexts. Otherwise, the adversary could query the decryption oracle on the
first position with a colliding mKEM ciphertext and detect the change that way.
B is given an DSDH instance (X,Y ). It runs A, emulating G0 or G1 as follows.

At the beginning, B generates N mKEM public keys pki,0 and corresponding
DH public keys pki,1. Some of the DH keys are “known”, i.e., generated as in
mmKGen, and other are “unknown”, i.e., their DH-related component is set to
Xxi for a random xi. In particular, each public key is unknown with probability
t = 1/qc. This choice maximizes the probability that B can answer all corrupt
queries and the event E happens for an unknown key, which will enable it to
extract a DSDH solution. A complete description of B can be found in Fig. 15.

In order to simulate the game consistently, B has to choose some keys in
the decapsulation as well as hash oracle. These are saved in the list DL and HL
respectively. It can check the list of the respective other oracle via its strong
Diffie-Hellman oracles Ox and Oy, since it embeds the challenge Y in some public
keys and X in the challenge. Specifically, it can use the oracles to check if a hash
query corresponds to a decapsulation query and vice versa without knowing the
secret keys.

There are three cases in which B aborts, denoted Bad1 to Bad3. Bad1 and Bad2
happen, if A guesses the random group element X before the second phase. Since
X is random and information-theoretically hidden form A before it receives its
challenge, with a union-bound we get that the events happen with probability at
most qH

p and qD1
p respectively. Bad3 occurs if either A queries a corruption query

on an unknown key or uses a non-challenge key at position 1 of the challenge,
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Algorithm Adversary B on DSDH

Adversary BOx,Oy (G, p, g,X, Y )
Corr← ∅,HL← ∅,DL← ∅
pp←$ mSetup()
for j ∈ [N ] do

(pkj,0, sk′j,0)←$ mKGen(pp)
Pick b[j]← {0, 1} with Pr[b[j] = 1] = 1

qC

αj ←$ Zp \ {0}
if b[j] = 1 then

pkj,1 ← Y αj // Embed the challenge
else

pkj,1 ← gαj // Allow corruption
pkj ← (pkj,0, pkj,1)

Phase← 1
(~m∗0, ~m∗1, ~pk

∗
, st)←$ AH,G,D1,Cor(pk1, . . . , pkN )

req |~m0| = |~m1| = | ~pk
∗
| = n

Parse ~pk
∗

as p̂ki1 , . . . , p̂kil , pk∗l+1, . . . , pk∗n for l ∈ [n]
s.t. ∀j ∈ [l] : ~m0[ij ] 6= ~m1[ij ] ∧ p̂kij ∈ ~pk
if b[i1] = 0 then

Bad3 ← True
abort

c∗0 ← X
(i, ~C)← (1, ())
while i ≤ n do

j ← max{j : mi = mj}
(C,Kmkem,j)← mKEM.mEncaps(pp, pki, . . . , pkj−1)
~C +← (C, j)
for ` ∈ [i, j − 1] do

Kdh,` ←$ K
c∗j ← E(G(Kdh,`,Kmkem,j), ~mb[j])
if ∃k ∈ [N ] : pkk = ~pk

∗
[j] ∧ k < i ∧ b[k] = 1

then
DL[j,X, (cj , j)] = Kdh,`

if j > 1 ∧ b[j] = 0 then
HL[Xαj , pk∗[j], j]← Kdh,`

i← j
Phase← 2
b′ ←$ AH,G,D2,Cor(c∗0, . . . , c∗n, st)
return ⊥

Oracle Cor(j)

Corr +← j
if b[j] = 1 then

Bad3 ← True
abort

return αj

Oracle H(Z,W, j)

if ∃k ∈ [N ] : W = pkk ∧ pkk = pk∗[i] ∧ b[k] = 1 ∧
Oy(Xαk , Z) = 1 then

return Z
1
αk

if Phase = 1 ∧Ox(W,Z) = 1 then
Bad2 ← 1
abort

if Phase = 2∧j ∈ [n]∧W = pk∗[j]∧Ox(W,Z) = 1∧j > i
then

return Kj

if ∃j ∈ [N ], c ∈ G, t ∈ K : W = pkj ∧ DL[i, (c, (∗, j))] =
t ∧Oy(cαj , Z) = 1 then

return t
if HL[Z,W, j] = ⊥ then

HL[Z,W, j]←$ K
return HL[Z,W, j]

Oracle DPhase(i, (cmkem, c0, (c, j)))

req i ∈ [N ]
if Phase = 1 ∧ c0 = X then

Bad1 ← 1
abort

Kmkem ← mDecaps(ski,0, cmkem)
if Kmkem = Kmkem,j for j s.t. i in the j-th block then

return ⊥
if ∃Z ∈ G, t ∈ K : HL[Z, pkj , j] = t∧(b[j] = 0 =⇒ Z =
pkαjj ∧ b[j] = 1 =⇒ Oy(cαj , Z) = 1) then

Kdh ← t
return D(G(Kdh,Kmkem), c)

if DL[i, (c0(c, j))] = ⊥ then
DL[i, (c0, (c, j))]←$ K

Kdh ← DL[i, (c0, j)]
return D(G(Kdh,Kmkem), c)

Fig. 15: Description of adversary B for Theorem 7 for the game hop from G1 to
G2.

i.e. B can’t embed its challenge. Since all keys look like uniformly random group
elements to A, the bi, i.e. the bits denoting whether a key is known or unknown,
are hidden from A as well. Therefore, the probability that Bad3 does not happen
can be bounded by

Pr[Bad3 = False] = (1− 1
qC

)qC · 1
qC
≤ 1
qCe2 ,
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Scheme |pk|
∣∣ci
∣∣ ∣∣cd

∣∣ Sum Sender Sum Receiver
Trivial (DH + Kyber) 864 0 1536 1536 · n 1536

Generic (DH + Kyber) (Fig. 10) 864 1312 224 k ∗ 1312 + n ∗ 224 1536
Optimized (with Kyber) (Fig. 11) 864 1312 224 32 + k ∗ 1280 + n ∗ 224 1536

Table 2: Comparison of different mmPKE constructions. “Trivial” simply uses
Kyber and HashedElGamal as KEMs with a regular KEM-combiner and does
a complete KEM encapsulation for each message. “Generic” denotes the con-
struction from Fig. 10 instantiated with Kyber [11] and HashedElGamal and
“Optimizted” denotes the construction from Fig. 11 also with Kyber. Sizes are in
bytes, n denotes the number of receivers and k the number of message blocks.

where we use that ln(1 + x) ≥ x
x+1 for all x ≥ −1 and rewrite (1 − 1

qC
)qC =

e
ln((1− 1

qC
)qC ) = e

qC ·ln(1− 1
qC

) ≥ e−1/(1− 1
qC

) ≥ e−2 for qC > 1.
Apart from the three bad cases, the simulation of the game for A is perfect.

Additionally, if A makes a query as in the first case of the random oracle
simulation, then B wins its DSDH game. As the two games for A are identical
unless it makes such a query, the difference can be bounded as claimed.

Similarly to the correctness of the construction in Fig. 10, the bound follows
from the fact that the DH-based construction is perfectly correct and a decapsu-
lation error in mKEM or a decryption error in DEM already causes a decryption
error in the overall construction. A union-bound yields the final bound. ut

B.7 Comparison

We compare our two constructions with the trivial construction of parallel PKE
composition in Table 2. For the Kyber part of all constructions, we consider
the scheme using both our compiler from Section 3.1 and the FO transform
from Section 4. Therefore, public key size increases by 1 hash value ( 32B) and
ciphertext size approximately doubles from regular Kyber.

First, note that all constructions have identical public key size and receiver
bandwidth. This is due to the fact that the used mmPKE constructions save
bandwidth by reusing randomness, but a receiver still gets the same ciphertext
in all cases.

For overall bandwidth, both our generic and optimized constructions are more
efficient than the trivial construction as long as messages are actually repeated,
since then the randomness reuse of the mKEM can be leveraged. For our optimized
construction, we always save bandwidth compared to both other constructions,
because we always only require one randomness carrier for the DDH-like mmPKE.
The generic and trivial construction coincide, if all messages are distinct.
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C API considerations

Our starting point for the API of the mKEM derived from Kyber is the NIST
API for KEMs in the C programming language13:

typdef unsigned char u8;
int crypto_kem_keypair(u8 *pk, u8 *sk);
int crypto_kem_enc(u8 *ct, u8 *ss, const u8 *pk);
int crypto_kem_dec(u8 *ss, const u8 *ct, const u8 *sk);

The most obvious changes to this API required for supporting an mKEM,
are to pass multiple public keys (i.e., an array of pointers) to the encapsulation
routine and to output multiple ciphertexts from encapsulation. In order to support
the optimizations proposed in this paper (or also the construction from [28]),
we need to additionally split ciphertexts into two components: one that is equal
for all recipients and one that differs for individual recipients. One final change
to the API concerns the public seed used to generate the “system parameter”
matrix A. Kyber—like most other lattice-based NIST candidates—follows the
approach of NewHope to make this seed part of the public key (see [2, Sec. 3]).
However, in the optimized mKEM construction we need all recipients to use the
same parameter A. One solution would be to fix a seed (and thus a parameter
A) in the implementation, but we decided to give protocols the flexibility to
use a different parameter for different groups of users and refresh the seed when
possible. We thus pass a pointer to this seed as additional parameter. This results
in the following API for the mKEM:

int crypto_mkem_keypair(u8 *pk, u8 *sk, const u8 *seed);
int crypto_mkem_enc(u8 *c1, u8 **c2s, u8 *ss, const u8 *seed,

size_t num_keys, u8 *const* pk);
int crypto_mkem_dec(u8 *ss, const u8 *c1, const u8 *c2, const u8 *sk);

In addition to this monolithic approach to encapsulation, our software also
provides a split API for encapsulation consisting of one function that computes
the common ciphertext component c1 (which can be called before public keys
are known) and one function that on input the public keys computes the array
of individual second components.

D Additional Benchmark Results

13 See https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/
documents/example-files/api-notes.pdf
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n Kyber mKEM Naive (n× Kyber)
cycles bytes cycles bytes

1 gen: 43572 gen: 33224
dec: 67724 dec: 31060

1 enc: 55364 pk: 800 enc: 43548 pk: 800
ct: 1537 ct: 768

2 enc: 80588 pk: 1600 enc: 87096 pk: 1600
ct: 1794 ct: 1536

10 enc: 282028 pk: 8000 enc: 435480 pk: 8000
ct: 3850 ct: 7680

100 enc: 2837664 pk: 80000 enc: 4354800 pk: 80000
ct: 26980 ct: 76800

1000 enc: 28099652 pk: 800000 enc: 43548000 pk: 800000
ct: 258280 ct: 768000

Table 3: Intel Haswell cycle counts and transmitted bytes for Kyber mKEM and
naive n× application of Kyber at NIST security level 1 (Kyber512)

n Kyber mKEM Naive (n× Kyber)
cycles bytes cycles bytes

1 gen: 63344 gen: 52244
dec: 96920 dec: 48188

1 enc: 77204 pk: 1184 enc: 64288 pk: 1184
ct: 2177 ct: 1088

2 enc: 111080 pk: 2368 enc: 128576 pk: 2368
ct: 2434 ct: 2176

10 enc: 384240 pk: 11840 enc: 642880 pk: 11840
ct: 4490 ct: 10880

100 enc: 3832316 pk: 118400 enc: 6428800 pk: 118400
ct: 27620 ct: 108800

1000 enc: 37947108 pk: 1184000 enc: 64288000 pk: 1184000
ct: 258920 ct: 1088000

Table 4: Intel Haswell cycle counts and transmitted bytes for Kyber mKEM and
naive n× application of Kyber at NIST security level 3 (Kyber768)
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