
CRYSTALS-Kyber

Algorithm Specifications And Supporting Documentation
(version 3.01)

Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint,
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, Damien Stehlé

January 31, 2021

1

Changelog
In the following we list the changes from Kyber as submitted to round-2 of the the NIST PQC project
in April 2019 and Kyber with round-3 tweaks together with brief explanations of the motivation for the
changes.

Changes to the core Kyber design
• Increase noise parameter for Kyber512

In the round-2 submission of Kyber, the decryption error for Kyber512 was rather conservative, while
at the same time, there were requests to increase the Core-SVP hardness of this parameter set. It
therefore made sense to increase the binomial error distribution for Kyber512. Instead of increasing it
from 2 to 3 across the board, we chose to use the fact that the rounding of the ciphertext coefficients to
10-bit integers also effectively adds some noise. We therefore increased the binomial noise from 2 to 3
of the parameters in the key generation procedure and of the parameter r in the encryption procedure,
but not of errors e1 and e2.

Relying on the rounding noise to add error is akin to the LWR assumption, but our reliance on it is
quite small. First, it only adds 6 bits of Core-SVP hardness, and second, we are adding noise and
rounding, which presumably has less algebraic structure than just rounding. In short, without the
LWR assumption, our new parameter set for Kyber512 still has 112 bits of core-SVP hardness as
before, while with a weak version of the LWR assumption, it has 118 bits.

• Reduce ciphertext compression of Kyber512
By making the noise larger, the probability of decryption failures also increases. To compensate, we
drop one less bit in the “second” ciphertext element, which increases our ciphertext size from 736 bytes
to 768 bytes, for a 2−139 decryption error.

• More efficient uniform sampling of the public matrix A
Instead of sampling uniformly-random integers modulo 3329 by using rejection sampling on a 2-byte
integer, we now use rejection sampling on a 12-bit integer. While the new rejection rate per coefficient
is higher (i.e. ≈ 20%), the total number of required bits and the running time of key generation are
noticeably smaller.

Changes to the specification and supporting documentation
• Updated specification to match the round-3 parameters.

• Updated performance numbers.

• ARM Cortex-M4 numbers are now included in the performance-analysis section. The corresponding
software (to be dropped into pqm4 [58]) is included in the submission package.

• A major update of the security analysis, in particular a much more detailed analysis of the state-
of-the art understanding of attacks beyond “core-SVP” hardness and a updated discussion of attacks
exploiting decryption failures.

2

Contents
1 Written specification 4

1.1 Preliminaries and notation. 4
1.2 Specification of Kyber.CPAPKE . 7
1.3 Specification of Kyber.CCAKEM . 10
1.4 Kyber parameter sets . 10
1.5 Design rationale . 12

2 Performance analysis 15
2.1 Implementation considerations and tradeoffs . 15
2.2 Performance of Kyber on Intel Haswell CPUs . 16
2.3 Performance of Kyber on ARM Cortex-M4 CPUs . 16

3 Known Answer Test values 18

4 Expected security strength 19
4.1 Security definition . 19
4.2 Rationale of our security estimates . 19
4.3 Security Assumption . 19

4.3.1 Tight reduction from MLWE in the ROM . 20
4.3.2 Non-tight reduction from MLWE in the QROM . 20

4.4 Estimated security strength . 21
4.5 Additional security properties . 23

4.5.1 Forward secrecy. 23
4.5.2 Side-channel attacks. 23
4.5.3 Multi-target attacks . 24
4.5.4 Misuse resilience . 24

5 Analysis with respect to known attacks 25
5.1 Attacks against the underlying MLWE problem . 25

5.1.1 Attacks against LWE . 25
5.1.2 Primal attack. 26
5.1.3 Dual attack . 26
5.1.4 Core-SVP hardness of Kyber . 27

5.2 Beyond core-SVP hardness . 27
5.2.1 A tentative gate-count estimate accounting for recent progress 27

5.3 Approximations, overheads, and foreseeable improvements . 29
5.3.1 Algebraic attacks. 31

5.4 Attacks against symmetric primitives . 31
5.5 Attacks exploiting decryption failures . 31

6 Advantages and limitations 33
6.1 Advantages . 33
6.2 Comparison to SIDH . 33
6.3 Comparison to code-based KEMs . 33
6.4 Comparison to other lattice-based schemes . 33

6.4.1 Schemes that build a KEM directly . 34
6.4.2 LWE based schemes . 34
6.4.3 Ring-LWE based schemes . 34
6.4.4 NTRU . 34
6.4.5 Different Polynomial Rings . 35
6.4.6 Deterministic Noise. 35

7 Brief discussion of relevant results since Nov. 2017 36

3

1 Written specification
Kyber is an IND-CCA2-secure key-encapsulation mechanism (KEM), which has first been described in [24].
The security of Kyber is based on the hardness of solving the learning-with-errors problem in module lattices
(MLWE problem [66]). The construction of Kyber follows a two-stage approach: we first introduce an IND-
CPA-secure public-key encryption scheme encrypting messages of a fixed length of 32 bytes, which we call
Kyber.CPAPKE. We then use a slightly tweaked Fujisaki–Okamoto (FO) transform [46] to construct the
IND-CCA2-secure KEM. Whenever we want to emphasize that we are speaking about the IND-CCA2-secure
KEM, we will refer to it as Kyber.CCAKEM.

In Subsection 1.1 we give preliminaries and fix notation. In Subsection 1.2 we give a full specifica-
tion of Kyber.CPAPKE. Subsection 1.3 gives details of the transform that we use in Kyber to obtain
Kyber.CCAKEM from Kyber.CPAPKE. Subsection 1.4 lists the parameters that we propose for different
security levels. Finally, Subsection 1.5 explains the design rationale behind Kyber.

1.1 Preliminaries and notation.

Bytes and byte arrays. Inputs and outputs to all API functions of Kyber are byte arrays. To simplify
notation, we denote by by B the set {0, . . . , 255}, i.e., the set of 8-bit unsigned integers (bytes). Consequently
we denote by Bk the set of byte arrays of length k and by B∗ the set of byte arrays of arbitrary length (or
byte streams). For two byte arrays a and b we denote by (a‖b) the concatenation of a and b. For a byte array
a we denote by a + k the byte array starting at byte k of a (with indexing starting at zero). For example,
let a by a byte array of length `, let b be another byte array and let c = (a‖b) be the concatenation of a and
b; then b = a+ `. When it is more convenient to work with an array of bits than an array of bytes we make
this conversion explicit via the BytesToBits function that takes as input an array of ` bytes and produces as
output an array of 8` bits. Bit βi at position i of the output bit array is obtained from byte bi/8 at position
i/8 of the input array by computing βi =

(
(bi/8/2

(i mod 8)) mod 2
)
.

Polynomial rings and vectors.We denote by R the ring Z[X]/(Xn+1) and by Rq the ring Zq[X]/(Xn+1),
where n = 2n

′−1 such that Xn + 1 is the 2n
′
-th cyclotomic polynomial. Throughout this document, the

values of n, n′ and q are fixed to n = 256, n′ = 9, and q = 3329. Regular font letters denote elements in R or
Rq (which includes elements in Z and Zq) and bold lower-case letters represent vectors with coefficients in
R or Rq. By default, all vectors will be column vectors. Bold upper-case letters are matrices. For a vector
v (or matrix A), we denote by vT (or AT) its transpose. For a vector v we write v[i] to denote it’s i-th
entry (with indexing starting at zero); for a matrix A we write A[i][j] to denote the entry in row i, column
j (again, with indexing starting at zero).

Modular reductions. For an even (resp. odd) positive integer α, we define r′ = r mod± α to be the
unique element r′ in the range −α2 < r′ ≤ α

2 (resp. −α−12 ≤ r′ ≤ α−1
2) such that r′ = r mod α. For any

positive integer α, we define r′ = r mod+α to be the unique element r′ in the range 0 ≤ r′ < α such that
r′ = r mod α. When the exact representation is not important, we simply write r mod α.

Rounding. For an element x ∈ Q we denote by dxc rounding of x to the closest integer with ties being
rounded up.

Sizes of elements. For an element w ∈ Zq, we write ‖w‖∞ to mean |w mod± q|. We now define the `∞
and `2 norms for w = w0 + w1X + . . .+ wn−1X

n−1 ∈ R:

‖w‖∞ = max
i
‖wi‖∞, ‖w‖ =

√
‖w0‖2∞ + . . .+ ‖wn−1‖2∞.

Similarly, for w = (w1, . . . , wk) ∈ Rk, we define

‖w‖∞ = max
i
‖wi‖∞, ‖w‖ =

√
‖w1‖2 + . . .+ ‖wk‖2.

Sets and Distributions. For a set S, we write s← S to denote that s is chosen uniformly at random from
S. If S is a probability distribution, then this denotes that s is chosen according to the distribution S.

4

Compression and Decompression. We now define a function Compressq(x, d) that takes an element
x ∈ Zq and outputs an integer in {0, . . . , 2d − 1}, where d < dlog2(q)e. We furthermore define a function
Decompressq, such that

x′ = Decompressq
(
Compressq(x, d), d

)
(1)

is an element close to x – more specifically

|x′ − x mod± q| ≤ Bq :=
⌈ q

2d+1

⌋
. (2)

The functions satisfying these requirements are defined as:

Compressq(x, d) = d(2d/q) · xc mod+2d ,

Decompressq(x, d) = d(q/2d) · xc .

When Compressq or Decompressq is used with x ∈ Rq or x ∈ Rkq , the procedure is applied to each
coefficient individually.

The main reason for defining the Compressq and Decompressq functions is to be able to discard some
low-order bits in the ciphertext which do not have much effect on the correctness probability of decryption
– thus reducing the size of ciphertexts.

The Compressq and Decompressq are also used for a purpose other than compression – namely to perform
the usual LWE error correction during encryption and decryption. More precisely, in line 20 of the encryption
procedure (Algorithm 5) the Decompressq function is used to create error tolerance gaps by sending the
message bit 0 to 0 and 1 to dq/2c. Later, on line 4 of the decryption procedure (Algorithm 6), the Compressq
function is used to decrypt to a 1 if v − sTu is closer to dq/2c than to 0, and decrypt to a 0 otherwise.

Symmetric primitives. The design of Kyber makes use of a pseudorandom function PRF : B32×B → B∗
and of an extendable output function XOF : B∗ ×B×B → B∗. Kyber also makes use of two hash functions
H : B∗ → B32 and G : B∗ → B32 × B32 and of a key-derivation function KDF : B∗ → B∗.

NTTs, multiplication, and bitreversed order. A very efficient way to perform multiplications in Rq is
via the so-called number-theoretic transform (NTT).

For our prime q = 3329 with q− 1 = 28 · 13, the base field Zq contains primitive 256-th roots of unity but
not primitive 512-th roots. Therefore, the defining polynomial X256 + 1 of R factors into 128 polynomials
of degree 2 modulo q and the NTT of a polynomial f ∈ Rq is a vector of 128 polynomials of degree one.
Simple in-place implementations of the NTT without reordering outputs these polynomials in bit-reversed
order and we define the NTT in this way. Concretely, let ζ = 17 be the first primitive 256-th root of unity
modulo q, and {ζ, ζ3, ζ5, . . . , ζ255} the set of all the 256-th roots of unity. The polynomial X256 + 1 can
therefore be written as

X256 + 1 =

127∏
i=0

(X2 − ζ2i+1) =

127∏
i=0

(X2 − ζ2br7(i)+1),

where br7(i) for i = 0, . . . , 127 is the bit reversal of the unsigned 7-bit integer i. This latter ordering of the
factors is useful for compatibility with the idiosyncrasies of AVX instructions. Then the NTT of f ∈ Rq is
given by

(f mod X2 − ζ2br7(0)+1, . . . , f mod X2 − ζ2br7(127)+1). (3)

This vector of linear polynomials is then serialized to a vector in Z256
q in the canonical way. Moreover, in

order to not introduce additional data types and facilitate in-place implementations of the NTT we define
NTT : Rq → Rq to be the bijection that maps f ∈ Rq to the polynomial with the aforementioned coefficient
vector. Hence,

NTT(f) = f̂ = f̂0 + f̂1X + · · ·+ f̂255X
255

5

with

f̂2i =

127∑
j=0

f2jζ
(2br7(i)+1)j , (4)

f̂2i+1 =

127∑
j=0

f2j+1ζ
(2br7(i)+1)j . (5)

We would like to stress that even though we write f̂ as a polynomial in Rq, it has no algebraic meaning
as such. The natural algebraic representation of NTT(f) = f̂ is as 128 polynomials of degree 1 as in (3)
using the definitions for f̂i from (4) and (5). That is,

NTT(f) = f̂ = (f̂0 + f̂1X, f̂2 + f̂3X, . . . , f̂254 + f̂255X).

Using NTT and its inverse NTT−1 we can compute the product f · g of two elements f, g ∈ Rq very effi-
ciently as NTT−1(NTT(f)◦NTT(g)) where NTT(f)◦NTT(g) = f̂ ◦ ĝ = ĥ denotes the basecase multiplication
consisting of the 128 products

ĥ2i + ĥ2i+1X = (f̂2i + f̂2i+1X)(ĝ2i + ĝ2i+1X) mod X2 − ζ2br7(i)+1

of linear polynomials.
When we apply NTT or NTT−1 to a vector or matrix of elements of Rq, then this means that the

respective operation is applied to each entry individually. When we apply ◦ to matrices or vectors it means
that we perform a usual matrix multiplication, but that the individual products of entries are the above
basecase multiplications.

Throughout the document we will write NTT and NTT−1 whenever we refer to the concrete functions as
defined above and use normal-font NTT whenever we refer to the general technique.

Uniform sampling in Rq. Kyber uses a deterministic approach to sample elements in Rq that are
statistically close to a uniformly random distribution. For this sampling we use a function Parse : B∗ → Rq,
which receives as input a byte stream B = b0, b1, b2, . . . and computes the NTT-representation â = â0 +
â1X+ · · ·+ ân−1X

n−1 ∈ Rq of a ∈ Rq. Parse is described in Algorithm 1 (note that this description assumes
that q = 3329).

Algorithm 1 Parse : B∗ → Rnq

Input: Byte stream B = b0, b1, b2 · · · ∈ B∗
Output: NTT-representation â ∈ Rq of a ∈ Rq
i := 0
j := 0
while j < n do

d1 := bi + 256 · (bi+1 mod+16)
d2 := bbi+1/16c+ 16 · bi+2

if d1 < q then
âj := d1
j := j + 1

end if
if d2 < q and j < n then

âj := d2
j := j + 1

end if
i := i+ 3

end while
return â0 + â1X + · · ·+ ân−1X

n−1

6

The intuition behind the function Parse is that if the input byte array is statistically close to a uniformly
random byte array, then the output polynomial is statistically close to a uniformly random element of Rq. It
represents a uniformly random polynomial in Rq because NTT is bijective and thus maps polynomials with
uniformly random coefficients to polynomials with again uniformly random coefficients.

Sampling from a binomial distribution. Noise in Kyber is sampled from a centered binomial distribu-
tion Bη for η = 2 or η = 3. We define Bη as follows:

Sample (a1, . . . , aη, b1, . . . , bη)← {0, 1}2η

and output
η∑
i=1

(ai − bi).

When we write that a polynomial f ∈ Rq or a vector of such polynomials is sampled from Bη, we mean that
each coefficient is sampled from Bη.

For the specification of Kyber we need to define how a polynomial f ∈ Rq is sampled according to Bη
deterministically from 64η bytes of output of a pseudorandom function (we fix n = 256 in this description).
This is done by the function CBD (for “centered binomial distribution”) defined as described in Algorithm 2.

Algorithm 2 CBDη : B64η → Rq

Input: Byte array B = (b0, b1, . . . , b64η−1) ∈ B64η
Output: Polynomial f ∈ Rq

(β0, . . . , β512η−1) := BytesToBits(B)
for i from 0 to 255 do

a :=
∑η−1
j=0 β2iη+j

b :=
∑η−1
j=0 β2iη+η+j

fi := a− b
end for
return f0 + f1X + f2X

2 + · · ·+ f255X
255

Encoding and decoding. There are two data types that Kyber needs to serialize to byte arrays: byte
arrays and (vectors of) polynomials. Byte arrays are trivially serialized via the identity, so we need to define
how we serialize and deserialize polynomials. In Algorithm 3 we give a pseudocode description of the function
Decode`, which deserializes an array of 32` bytes into a polynomial f = f0 + f1X + · · ·+ f255X

255 (we again
fix n = 256 in this description) with each coefficient fi in {0, . . . , 2` − 1}. We define the function Encode` as
the inverse of Decode`. Whenever we apply Encode` to a vector of polynomials we encode each polynomial
individually and concatenate the output byte arrays.

Algorithm 3 Decode` : B32` → Rq

Input: Byte array B ∈ B32`
Output: Polynomial f ∈ Rq

(β0, . . . , β256`−1) := BytesToBits(B)
for i from 0 to 255 do

fi :=
∑`−1
j=0 βi`+j2

j

end for
return f0 + f1X + f2X

2 + · · ·+ f255X
255

1.2 Specification of Kyber.CPAPKE

Kyber.CPAPKE is similar to the LPR encryption scheme that was introduced (for Ring-LWE) by Lyuba-
shevsky, Peikert, and Regev in the presentation of [71] at Eurocrypt 2010 [72]; the description is also in the
full version of the paper [73, Sec. 1.1]. The roots of this scheme go back to the first LWE-based encryption

7

scheme presented by Regev in [93, 94], with the main difference being that the underlying ring is not Zq and
both the secret and the error vectors have small coefficients. The idea of using a polynomial ring (instead of
Zq) goes back to the NTRU cryptosystem presented by Hoffstein, Pipher, and Silverman in [53], while the
symmetry between the secret and the error was already employed in very similar cryptographic schemes in
[8, 70] with the security justification from [12].

The main difference from the LPR encryption scheme is to use Module-LWE instead of Ring-LWE. Also,
we adopt the approach taken by Alkım, Ducas, Pöppelmann and Schwabe in [10] for the generation of the
public matrix A. Furthermore, we shorten ciphertexts by rounding off the low bits as in learning-with-
rounding-based schemes [15, Eq. 2.1], which is a common technique for reducing ciphertext size also in
LWE-based schemes (c.f. [83, 89]).

Parameters. Kyber.CPAPKE is parameterized by integers n, k, q, η1, η2, du, and dv. As stated before,
throughout this document n is always 256 and q is always 3329.

Using the notation of Subsection 1.1 we give the definition of key generation, encryption, and decryption
of the Kyber.CPAPKE public-key encryption scheme in Algorithms 4, 5, and 6. A more high-level view of
these algorithms is given in the comments.

Algorithm 4 Kyber.CPAPKE.KeyGen(): key generation

Output: Secret key sk ∈ B12·k·n/8
Output: Public key pk ∈ B12·k·n/8+32

1: d← B32
2: (ρ, σ) := G(d)
3: N := 0
4: for i from 0 to k − 1 do . Generate matrix Â ∈ Rk×kq in NTT domain
5: for j from 0 to k − 1 do
6: Â[i][j] := Parse(XOF(ρ, j, i))
7: end for
8: end for
9: for i from 0 to k − 1 do . Sample s ∈ Rkq from Bη1

10: s[i] := CBDη1(PRF(σ,N))
11: N := N + 1
12: end for
13: for i from 0 to k − 1 do . Sample e ∈ Rkq from Bη1
14: e[i] := CBDη1(PRF(σ,N))
15: N := N + 1
16: end for
17: ŝ := NTT(s)
18: ê := NTT(e)

19: t̂ := Â ◦ ŝ + ê
20: pk := (Encode12(t̂ mod+q)‖ρ) . pk := As + e
21: sk := Encode12(ŝ mod+q) . sk := s
22: return (pk , sk)

8

Algorithm 5 Kyber.CPAPKE.Enc(pk ,m, r): encryption

Input: Public key pk ∈ B12·k·n/8+32

Input: Message m ∈ B32
Input: Random coins r ∈ B32
Output: Ciphertext c ∈ Bdu·k·n/8+dv·n/8
1: N := 0
2: t̂ := Decode12(pk)
3: ρ := pk + 12 · k · n/8
4: for i from 0 to k − 1 do . Generate matrix Â ∈ Rk×kq in NTT domain
5: for j from 0 to k − 1 do
6: ÂT [i][j] := Parse(XOF(ρ, i, j))
7: end for
8: end for
9: for i from 0 to k − 1 do . Sample r ∈ Rkq from Bη1

10: r[i] := CBDη1(PRF(r,N))
11: N := N + 1
12: end for
13: for i from 0 to k − 1 do . Sample e1 ∈ Rkq from Bη2
14: e1[i] := CBDη2(PRF(r,N))
15: N := N + 1
16: end for
17: e2 := CBDη2(PRF(r,N)) . Sample e2 ∈ Rq from Bη2
18: r̂ := NTT(r)

19: u := NTT−1(ÂT ◦ r̂) + e1 . u := AT r + e1
20: v := NTT−1(t̂T ◦ r̂) + e2 + Decompressq(Decode1(m), 1) . v := tT r + e2 + Decompressq(m, 1)
21: c1 := Encodedu(Compressq(u, du))
22: c2 := Encodedv (Compressq(v, dv))
23: return c = (c1‖c2) . c := (Compressq(u, du),Compressq(v, dv))

Algorithm 6 Kyber.CPAPKE.Dec(sk , c): decryption

Input: Secret key sk ∈ B12·k·n/8
Input: Ciphertext c ∈ Bdu·k·n/8+dv·n/8
Output: Message m ∈ B32
1: u := Decompressq(Decodedu(c), du)
2: v := Decompressq(Decodedv (c+ du · k · n/8), dv)
3: ŝ := Decode12(sk)
4: m := Encode1(Compressq(v − NTT−1(ŝT ◦ NTT(u)), 1)) . m := Compressq(v − sTu, 1))
5: return m

9

1.3 Specification of Kyber.CCAKEM

We construct the Kyber.CCAKEM IND-CCA2-secure KEM from the IND-CPA-secure public-key encryption
scheme described in the previous subsection via a slightly tweaked Fujisaki–Okamoto transform [46]. In
Algorithms 7, 8, and 9 we define key generation, encapsulation, and decapsulation of Kyber.CCAKEM.

Algorithm 7 Kyber.CCAKEM.KeyGen()

Output: Public key pk ∈ B12·k·n/8+32

Output: Secret key sk ∈ B24·k·n/8+96

1: z ← B32
2: (pk , sk ′) := Kyber.CPAPKE.KeyGen()
3: sk := (sk ′‖pk‖H(pk)‖z)
4: return (pk , sk)

Algorithm 8 Kyber.CCAKEM.Enc(pk)

Input: Public key pk ∈ B12·k·n/8+32

Output: Ciphertext c ∈ Bdu·k·n/8+dv·n/8
Output: Shared key K ∈ B∗
1: m← B32
2: m← H(m) . Do not send output of system RNG
3: (K̄, r) := G(m‖H(pk))
4: c := Kyber.CPAPKE.Enc(pk ,m, r)
5: K := KDF(K̄‖H(c))
6: return (c,K)

Algorithm 9 Kyber.CCAKEM.Dec(c, sk)

Input: Ciphertext c ∈ Bdu·k·n/8+dv·n/8
Input: Secret key sk ∈ B24·k·n/8+96

Output: Shared key K ∈ B∗
1: pk := sk + 12 · k · n/8
2: h := sk + 24 · k · n/8 + 32 ∈ B32
3: z := sk + 24 · k · n/8 + 64
4: m′ := Kyber.CPAPKE.Dec(s, (u, v))
5: (K̄ ′, r′) := G(m′‖h)
6: c′ := Kyber.CPAPKE.Enc(pk ,m′, r′)
7: if c = c′ then
8: return K := KDF(K̄ ′‖H(c))
9: else

10: return K := KDF(z‖H(c))
11: end if
12: return K

1.4 Kyber parameter sets
We define three parameter sets for Kyber, which we call Kyber512, Kyber768, and Kyber1024. The
parameters are listed in Table 1. Note that the table also lists the derived parameter δ, which is the
probability that decapsulation of a valid Kyber.CCAKEM ciphertext fails. The parameters were obtained
via the following approach:

10

Table 1: Parameter sets for Kyber

n k q η1 η2 (du, dv) δ

Kyber512 256 2 3329 3 2 (10, 4) 2−139

Kyber768 256 3 3329 2 2 (10, 4) 2−164

Kyber1024 256 4 3329 2 2 (11, 5) 2−174

• n is set to 256 because the goal is to encapsulate keys with 256 bits of entropy (i.e., use a plaintext
size of 256 bits in Kyber.CPAPKE.Enc). Smaller values of n would require to encode multiple key bits
into one polynomial coefficient, which requires lower noise levels and therefore lowers security. Larger
values of n would reduce the capability to easily scale security via parameter k.

• We choose q as a small prime satisfying n | (q − 1); this is required to enable the fast NTT-based
multiplication. There are two smaller primes for which this property holds, namely 257 and 769.
However, for those primes we would not be able to achieve negligible failure probability required for
CCA security, so we chose the next largest, i.e., q = 3329.

• k is selected to fix the lattice dimension as a multiple of n; changing k is the main mechanism in Kyber
to scale security (and as a consequence, efficiency) to different levels.

• The remaining parameters η1, η2, du and dv were chosen to balance between security (see Section 4),
ciphertext size, and failure probability. Note that all three parameter sets achieve a failure probability
of < 2−128 with some margin. We discuss this in more detail in Subsections 1.5 and 5.5.

• The parameter η1 defines the noise of s and e in Algorithm 4 and of r in Algorithm 5. The parameter
η2 defines the noise of e1 and e2 in Algorithm 5. We discuss the reason for setting η1 > η2 in the
Kyber512 parameter set in Section 1.5.

The failure probability δ is computed with the help of the Kyber.py Python script which is available
online at https://github.com/pq-crystals/security-estimates. For the theoretical background of that
script see [24, Theorem 1].

Instantiating PRF, XOF, H, G, and KDF. What is still missing to complete the specification of Kyber
is the instantiation of the symmetric primitives. We instantiate all of those primitives with functions from
the FIPS-202 standard [80] as follows:

• We instantiate XOF with SHAKE-128;

• we instantiate H with SHA3-256;

• we instantiate G with SHA3-512;

• we instantiate PRF(s, b) with SHAKE-256(s||b); and

• we instantiate KDF with SHAKE-256.

“90s” variant of Kyber. In the 90s variant of Kyber

• we instantiate XOF(ρ, i, j) with AES-256 in CTR mode, where ρ is used as the key and i‖j is zero-
padded to a 12-byte nonce. The counter of CTR mode is initialized to zero.

• we instantiate H with SHA-256;

• we instantiate G with SHA-512;

• we instantiate PRF(s, b) with AES-256 in CTR mode, where s is used as the key and b is zero-padded
to a 12-byte nonce. The counter of CTR mode is initialized to zero.

• we instantiate KDF with SHAKE-256.

11

https://github.com/pq-crystals/security-estimates

1.5 Design rationale
The design of Kyber is based on the module version [66] of the Ring-LWE LPR encryption scheme [71]
with bit-dropping [83, 89]. It is also enhanced by many of the improvements of preceding implementations of
lattice-based encryption schemes such as NewHope [10]. In NewHope (and all other Ring-LWE schemes),
operations were of the form As+e where all the variables were polynomials in some ring. The main difference
in Kyber is that A is now a matrix (with a small dimension like 3) over a constant-size polynomial ring
and s, e are vectors over the same ring. We refer to this as a scheme over “module lattices.”

The use of Module-LWE. Previous proposals of LWE-based cryptosystems either used the very structured
Ring-LWE problem (as, for example, NewHope [10]) or standard LWE (as, for example, Frodo [23]). The
main advantage of structured LWE variants based on polynomial rings is efficiency in terms of both speed
and key and ciphertext sizes. The disadvantages are concerns that the additional structure might enable
more efficient attacks and that tradeoffs between efficiency and security can be scaled only rather coarsely.
The advantages of standard LWE is the lack of structure and easy scalability, but those come at the cost of
significantly decreasing efficiency. Module-LWE offers a trade-off between these two extremes. In the specific
case of the Module-LWE parameters used in Kyber, we obtain somewhat reduced structure compared to
Ring-LWE, much better scalability, and—when encrypting messages of a fixed size of 256 bits—performance
very similar to Ring-LWE-based schemes.

Active security. In [25], Bos, Costello, Naehrig, and Stebila used a passively secure KEM to migrate TLS to
transitional post-quantum security (i.e., post-quantum confidentiality, but only pre-quantum authentication).
Subsequent work, like NewHope [10] or Frodo [23] followed up and proposed more efficient and more
conservative instantiations of the underlying passively secure KEM. One advantage of passively secure KEMs
is that they can accept a higher failure probability (which allows to either increase security by increasing
noise or decreasing public-key and ciphertext size). The other advantage is that they do not require a
CCA transform, and therefore come with faster decapsulation. Despite these advantages, Kyber is defined
as an IND-CCA2 secure KEM only. For many applications like public-key encryption (via a KEM-DEM
construction) or in authenticated key exchange active security is mandatory. However, also in use cases (like
key exchange in TLS) that do not strictly speaking require active security, using an actively secure KEM
has advantages. Most notably, it allows (intentional or accidental) caching of ephemeral keys. Furthermore,
the CCA transform of Kyber protects against certain bugs in implementations. Specifically, passively
secure schemes will not notice if the communication partner uses “wrong” noise, for example, all-zero noise.
Such a bug in the encapsulation of Kyber will immediately be caught by the re-encryption step during
decapsulation. As a conclusion, we believe that the overhead of providing CCA security is not large enough
to justify saving it and making the scheme less robust.

The role of the NTT. Multiplication in Rq based on the number-theoretic transform (NTT) has multiple
advantages: it is extremely fast, does not require additional memory (like, for example, Karatsuba or Toom
multiplication) and can be done in very little code space. Consequently, it has become common practice to
choose parameters of lattice-based crypto to support this very fast multiplication algorithm. Some schemes
go further and make the NTT part of the definition of the scheme. A prominent example is again NewHope,
which samples the public value a in NTT domain and also sends public keys and ciphertexts in NTT domain
to save 2 NTTs. NewHope was not the first scheme to do this; for earlier examples see [69, 89, 95].

In Kyber we also decided to make the NTT part of the definition of the scheme, but only in the sampling
of A and the public key, not for the format of the ciphertext. A consequence of this decision is that the
NTT appears in the specification of Kyber.CPAPKE. Note that multiplications by A have to use the NTT,
simply because Â is sampled in NTT domain1. Similarly, multiplications by the public-key t̂ have to use
the NTT, because the public key is transmitted in NTT domain. As a consequence, implementations will
also want to use the NTT for all other multiplications, so we make those invocations of NTT and NTT−1

also explicit in Alg. 4, Alg. 5, and Alg. 6. Note that also the secret key sk is stored in NTT domain.
We could have chosen to not make the NTT part of the definition of Kyber, which would have increased

simplicity of the description. The cost for this increased simplicity would have been k2 additional NTT
operations in both key generation and encapsulation, which would result in a noticeable slowdown. We
could also have chosen to not encode the public key in NTT domain; however this would also have required

1An alternative would be to apply NTT−1 to Â but that would counteract the whole point of sampling A in NTT domain.

12

additional NTTs. Finally, we could have chosen to also send the ciphertext in NTT domain; however, this
would be incompatible with ciphertext compression via the Compressq function.

Against all authority. For the generation of the public uniformly random matrix A, we decided to adopt
the “against-all-authority” approach of NewHope. This means that the matrix is not a system parameter
but instead generated freshly as part of every public key. There are two advantages to this approach: First,
this avoids discussions about how exactly a uniformly random system parameter was generated. Second, it
protects against the all-for-the-price-of-one attack scenario of an attacker using a serious amount of compu-
tation to find a short basis of the lattice spanned by A once and then using this short basis to attack all
users. The cost for this decision is the expansion of the matrix A from a random seed during key generation
and encapsulation; we discuss this cost more in Subsection 2.1.

Binomial noise. Theoretic treatments of LWE-based encryption typically consider LWE with Gaussian
noise, either rounded Gaussian [93] or discrete Gaussian [28]. As a result, many early implementations also
sampled noise from a discrete Gaussian distribution, which turns out to be either fairly inefficient (see, for
example, [25]) or vulnerable to timing attacks (see, for example, [29, 88, 44]). The performance of the best
known attacks against LWE-based encryption does not depend on the exact distribution of noise, but rather
on the standard deviation (and potentially the entropy). This motivates the use of noise distributions that
we can easily, efficiently, and securely sample from. One example is the centered binomial distribution used
in [10]. Another example is the use of “learning-with-rounding” (LWR), which adds deterministic uniform
noise by dropping bits as in Kyber’s Compressq function. In the design of Kyber we decided to use centered
binomial noise and thus rely on LWE instead of LWR as the underlying problem.

Allowing decapsulation failures. Another interesting design decision is whether to allow decapsulation
failures (i.e., decryption failures in Kyber.CPAPKE) or choose parameters that not only have a negligible,
but a zero chance of failure. The advantages of zero failure probability are obvious: CCA transforms and
security proofs become easier and we can avoid the whole discussion of attacks exploiting decapsulation
failures in Subsection 5.5. The disadvantage of designing LWE-based encryption with zero failures is that
it means either decreasing security against attacks targeting the underlying lattice problem (by significantly
decreasing the noise) or decreasing performance (by compensating for the loss in security via an increase of
the lattice dimension). The decision to allow failure probabilities in all parameter sets of Kyber reflects the
intuition that

• decapsulation failures are a problem if they appear with non-negligible probability; but

• attacks attempting to exploit failures that occur with extremely low probability as in Kyber are a
much smaller threat than, for example, improvements to hybrid attacks [55] targeting schemes with
very low noise.

Different noise values η1 and η2. Notice that in Algorithm 5, there is additional implicit noise created
via Compressq. This has the effect of adding some (deterministic) noise to the ciphertext, which can be
interpreted as increasing the noise of the error polynomials e1 and e2. If the decryption error probability is
low enough, then it then makes sense to also increase the noise of the other secret terms (i.e. s, e, r) to be at a
similar level as e1 plus the deterministic noise. We utilize this idea (exclusively) for the Kyber512 parameter
set. Relying on the rounding noise from Compressq to add error is akin to the LWR assumption. But unlike
in (Ring/Module)-LWR schemes, where the security completely relies on the noise that’s deterministically
generated by rounding, our dependence on the deterministic noise is much smaller. First, it only adds 6
bits of Core-SVP hardness, and second, we are adding noise and rounding together, which presumably has
less algebraic structure than just rounding. In short, without the LWR assumption, our parameter set for
Kyber512 has 112 bits of core-SVP hardness – more specifically, the public keys are protected with 118
bits, and the ciphertexts with 112; with a weak version of the LWR assumption, it has 118-bit security
everywhere.

Additional Hashes. In the CCA transform we hash the (hash of the) public key pk into the pre-key K̄
and into the random coins r (see line 3 of Alg. 8), and we hash the (hash of the) ciphertext into the final
key K. These hashes are not necessary for the security reduction (see Section 4), but they add robustness.
Specifically, the final shared key output by Kyber.CCAKEM depends on the full view of exchanged messages

13

(public key and ciphertext), which means that the KEM is contributory and safe to use in authenticated key
exchanges without additional hashing of context. Hashing pk also into the random coins r adds protection
against a certain class of multi-target attacks that attempt to make use of protocol failures. This is discussed
in more detail in Subsection 5.5.

Choice of symmetric primitives. In the design of Kyber we need an extendable output function (XOF),
two hash functions, a pseudorandom function, and a KDF. We decided to rely on only one underlying
primitive for all those functions. This helps to reduce code size in embedded platforms and (for a conservative
choice) reduces concerns that Kyber could be attacked by exploiting weaknesses in one out of several
symmetric primitives. There are only relatively few extendable output functions described in the literature.
The best known ones, which also coined the term XOF, are the SHAKE functions based on Keccak [20] and
standardized in FIPS-202 [80]. This standard conveniently also describes hash functions with the output
lengths we need; furthermore, SHAKE is designed to also work as a PRF. These properties of the FIPS-202
function family made the choice easy, but there are still two decisions that may need explanation:

• We could have chosen to instantiate all symmetric primitives with only one function (e.g., SHAKE-
256) from the FIPS-202 standard. The choice of SHAKE-128 as instantiation of the XOF is actually
important for performance; also we do not need any of the traditional security properties of hash
functions from SHAKE-128, but rather that the output “looks uniformly random”. In an earlier version
of Kyber we instantiated H, G, and PRF all with SHAKE-256. We decided to change this to different
functions from the FIPS-202 family to avoid any domain-separation discussion. Note that this decision
increases code-size at most marginally: all 4 functions can be obtained by a call to a “Keccak” function
with appropriate arguments (see, for example, [19]).

• We could have decided to use KMAC from NIST Special Publication 800-185 to instantiate the PRF.
We decided against this, because it would increase the numbers of Keccak permutations required in
the generation of the noise polynomials and thus noticeably and unnecessarily decrease performance.

As a modification in round-2, we decided to derive the final key using SHAKE-256 instead of SHA3-256.
This is an advantage for protocols that need keys of more than 256 bits. Instead of first requesting a 256-bit
key from Kyber and then expanding it, they can pass an additional key-length parameter to Kyber and
obtain a key of the desired length. This feature is not supported by the NIST API, so in our implementations
we set the keylength to a fixed length of 32 bytes in api.h.

Choice of symmetric primitives in the “90s” variant The 90s variant of Kyber uses symmetric
primitives that are standardized by NIST and accelerated in hardware on a large variety of platforms. These
two criteria narrow the choice to AES and SHA-256, which are, for example, implemented in hardware on
recent Intel, AMD, and ARM processors. A natural choice for the hash function G with 512-bit output is
SHA-512 from the same SHA-2 family of hash functions as SHA-256.

Supporting non-incremental hash APIs. In line 3 of Alg. 8 we feed H(pk) (instead of pk) into G and
in line 5 we feed H(c) (instead of c) into H. Using H(pk) in the call to G enables a small speedup for
decapsulation as described in Subsection 2.1. However, there is another reason why we first hash pk and c,
namely that it simplifies implementing Kyber with a non-incremental hash API. If Kyber is implemented
in an environment which already offers a library for hashing, but only offers calls of the form h = H(m), then
producing a hash of the form h = H(m1‖m2) would first require copying m1 and m2 into one consecutive
area of memory. This would require unnecessary copies and, more importantly, additional stack space. Such
non-incremental hash APIs are not uncommon: one example is the API of NaCl [18].

Return value for decapsulation failure. Traditionally the FO transform returns ⊥ (i.e., a special failure
symbol) when decapsulation fails. We use a variant that instead sets the resulting shared key to a pseudo-
random value computed as the hash of a secret z and the ciphertext c. This variant of the FO transform
was proven secure in [54]. In practice it has the advantage that implementations of Kyber’s decapsulation
are safe to use even if higher level protocols fail to check the return value. As a consequence of this implicit
rejection approach, our implementations of decapsulation always return 0.

14

2 Performance analysis
In this section we consider implementational aspects of Kyber and report performance results of two imple-
mentations: the ANSI C reference implementation requested by NIST and an implementation optimized using
AVX2 vector instructions. included in the submission package under Additional_Implementations/avx2/.
We remark that the optimized implementation in ANSI C in subdirectory Optimized_Implementation/, as
requested by the Call for Proposals, is a copy of the reference implementation.

The big picture of Kyber performance. Thanks to the extremely efficient NTT-based multiplication and
sampling of A in NTT domain, the performance of Kyber is largely determined by the performance of the
symmetric primitives. This is illustrated, for example, by the fact that the AVX2-optimized implementation
of the 90s variant of Kyber is almost twice as fast as Kyber with symmetric primitives based on Keccak. This
difference is going to be even larger on systems with hardware-accelerated SHA-256. It is also illustrated
by the fact that for optimized implementations, decapsulation is faster than encapsulation, even though
the former contains a re-encapsulation necessary for the FO transform. The main reason for this is that
decapsulation does not need to compute H(pk), which more than compensates for the extra NTT-dominated
re-encapsulation.

The fact that (sequential) hashing is very slow in relation to polynomial arithmetic on recent Intel
processors also means that the additional hashes discussed in Section 1.5 have a very significant impact on
performance: they account for almost half of the encapsulation cycles of our AVX2-optimized implementation
on Intel processors.2 As also mentioned in Section 1.5, hashing the public key and the ciphertext is not
required for CCA security, but is instead done to make the function more robust and directly usable in
applications that require the shared key to depend on the entire transcript. Our rationale is that because
the basic operations comprising Kyber are extremely fast, we can afford to pay a time penalty and make
the default version of Kyber as robust and misuse-resilient as possible. Nevertheless, in light of the fact
that this hashing has a profound effect on the absolute performance of the scheme, it is an interesting future
research direction to see whether there are applications that indeed require hashing the entire ciphertext
and/or public key. If it’s enough to only a hash a small part of them, then the running time of Kyber can
be cut in half (on many processors) without sacrificing any robustness.

2.1 Implementation considerations and tradeoffs

Implementing the NTT. Many different tradeoffs are possible when implementing the number-theoretic
transform. The most important ones are between code size (which becomes mainly relevant on embedded
processors) and speed. The two implementations of Kyber included in the submission package have a
dedicated forward NTT (from normal to bitreversed order) and inverse NTT (from bitreversed to normal
order). Also, both implementations use precomputed tables of powers of ζ. What is particularly interesting
about using the NTT on embedded platforms is that the multiplication of two elements of Rq can be
computed without any additional temporary storage. What is particularly interesting about using the NTT
on large processors is that it is extremely efficiently vectorizable. Since 2013, the most efficient approach to
compute the NTT on 64-bit Intel processors was to represent coefficients as double-precision floating-point
values [50, 10]. In our AVX2-optimized implementation of Kyber, we show that carefully optimizing the
NTT using AVX2 integer instructions results in much better performance. Specifically, on Intel Haswell
CPUs one forward NTT in Kyber takes only about 320 cycles; an inverse NTT takes only about 290 cycles.

Keccak. The second speed-critical component inside Kyber are the symmetric primitives, i.e., SHA3-256,
SHA3-512, SHAKE-128, and SHAKE-256, all based on the Keccak permutation. SHA3 has the reputation to
not be the fastest hash function in software (see, for example, [65]). To some extent this is compensated by the
fact that most calls to Keccak are parallel and thus very efficiently vectorizable. Our AVX2 implementation
makes use of this fact. Also, ARM recently announced that future ARMv8 processors will have hardware
support for SHA3 [49], so there is a good chance that at least on some architectures, software performance
of SHA3 will not be an issue in the future.

2The reason that the use of Keccak as an XOF to expand the public matrix A from the seed ρ, and as a PRF to generate
secrets and noise, has a smaller impact is because these Keccak invocations are efficiently parallelizable.

15

AES and SHA-2. To illustrate what performance Kyber can achieve with hardware-accelerated symmetric
primitives we include the 90s variant using AES, SHA256 and SHA512 instead of symmetric primitives based
on Keccak. This variant is interesting only if at least AES is accelerated in hardware, because constant-time
software implementations (required for the use of AES as a PRF) are not faster than parallel Keccak.

Hardware-RNGs for key generation. During key generation, the generation of s and e is performed
using SHAKE-256 (and AES in the 90s variant). However, this is not required. The choice of RNG during
key generation is a local decision that any user and platform can make independently. In particular on
platforms with fast hardware AES one can adapt the AES-based PRF from the 90s variant also for the
otherwise Keccak-based Kyber. We considered using this in our AVX2 implementation, but using this
optimization means that testvectors would not match between our two implementations. This is not an issue
in actual deployments, where randombytes is not deterministic.

Caching of ephemeral keys. Applications that are even more conscious of key-generation time can decide
to cache ephemeral keys for some time. This is enabled by the fact that Kyber is IND-CCA2 secure.

Tradeoffs between secret-key size and speed. It is possible to use different tradeoffs between secret-key
size and decapsulation speed. If secret-key size is critical, it is of course possible to not store H(pk) and
also to not store the public key as part of the secret key but instead recompute it during decapsulation.
Furthermore, not keeping the secret key in NTT domain makes it possible to compress each coefficient to
only 3 bits, which means that a Kyber768 secret key can be compressed into just 288 bytes. This has the
additional advantage that it makes key recovery via cold-boot attacks [51] somewhat harder [3]. Finally,
as all randomness in key generation is generated from two 32-byte seeds, it is also possible to only store
these seeds and re-run key generation during decapsulation. When opting for such 32-byte secret keys, the
re-encapsulation step of decapsulation can save the expansion of the matrix A, is it is already expanded (in
transposed form) in key generation.

In the other direction, if secret-key size does not matter very much and decapsulation speed is critical,
one might decide to store the expanded matrix A as part of the secret key and avoid recomputation from
the seed ρ during the re-encapsulation part of decapsulation.

Both implementations included in the submission package use the secret-key format described in Algo-
rithm 7, i.e., with polynomials in NTT domain, including the public key and H(pk), but not including the
matrix A.

Local storage format of static public keys. A user who is frequently encapsulating messages to the
same public key can speed up encapsulation by locally storing an expanded public key containing the matrix
A and H(pk). This saves the cost of expanding the matrix A from the seed ρ and the cost of hashing pk in
every encapsulation.

2.2 Performance of Kyber on Intel Haswell CPUs
Table 2 reports Intel Haswell performance results of the reference implementation and an AVX2-optimized
implementation of Kyber and the 90s variant of Kyber together with the sizes of keys and ciphertexts. All
benchmarks were obtained on one core of an Intel Core i7-4770K (Haswell) processor clocked at 3492MHz (as
reported by /proc/cpuinfo) with TurboBoost and hyperthreading disabled. The benchmarking machine has
32GB of RAM and is running Debian GNU/Linux with Linux kernel version 4.19.0. Both implementations
were compiled with gcc version 8.3.0 and the compiler flags as indicated in the Makefiles included in the
submission package. All cycle counts reported are the median of the cycle counts of 10 000 executions of the
respective function. The implementations are not optimized for memory usage, but generally Kyber has
only very modest memory requirements. This means that in particular our implementations do not need to
allocate any memory on the heap.

2.3 Performance of Kyber on ARM Cortex-M4 CPUs
Table 3 reports cycle counts and RAM usage of a C implementation (“clean”) and an optimized implemen-
tation (“m4”) of Kyber on an ARM Cortex-M4. The clean C implementation is a slightly modified version
of our C reference implementation from the PQClean project [57]. The optimized implementation is based

16

Table 2: Key and ciphertext sizes and cycle counts for all paramter sets of Kyber. Cycle counts were
obtained on one core of an Intel Core i7-4770K (Haswell); “ref” refers to the C reference implementation,
“AVX2” to the implementation using AVX2 vector instructions; sk stands for secret key, pk for public key,
and ct for ciphertext. In parenthesis are approximate values when including key generation in decapsulation
to avoid having to store expanded secret keys. In this scenario, we only store the initial seed d in line 1 of
Algorithm 4. The approximate cycle counts for this scenario are computed as the sum of cycle counts for
standard decapsulation and key generation minus the number of cycles require to generate the matrix A from
the public seed ρ. Note that this is a very conservative estimate; actual implementations of the approach can
also save, for example, sampling the 32 bytes of randomness. See also the discussion on “tradeoffs between
secret-key size and speed” in Subsection 2.1.

Kyber512

Sizes (in Bytes) Haswell Cycles (ref) Haswell Cycles (AVX2)
sk: 1632 (or 32) gen: 122684 gen: 33856

pk: 800 enc: 154524 enc: 45200

ct: 768 dec: 187960 (or ≈ 288912) dec: 34572 (or ≈ 59088)
Kyber512-90s

Sizes (in Bytes) Haswell Cycles (ref) Haswell Cycles (AVX2)
sk: 1632 (or 32) gen: 213156 gen: 21880

pk: 800 enc: 249084 enc: 28592

ct: 768 dec: 277612 (or ≈ 405268) dec: 20980 (or ≈ 38752)

Kyber768

Sizes (in Bytes) Haswell Cycles (ref) Haswell Cycles (AVX2)
sk: 2400 (or 32) gen: 199408 gen: 52732

pk: 1184 enc: 235260 enc: 67624

ct: 1088 dec: 274900 (or ≈ 425492) dec: 53156 (or ≈ 82220)
Kyber768-90s

Sizes (in Bytes) Haswell Cycles (ref) Haswell Cycles (AVX2)
sk: 2400 (or 32) gen: 389760 gen: 30460

pk: 1184 enc: 432764 enc: 40140

ct: 1088 dec: 473984 (or ≈ 671864) dec: 30108 (or ≈ 51512)

Kyber1024

Sizes (in Bytes) Haswell Cycles (ref) Haswell Cycles (AVX2)
sk: 3168 (or 32) gen: 307148 gen: 73544

pk: 1568 enc: 346648 enc: 97324

ct: 1568 dec: 396584 (or ≈ 617848) dec: 79128 (or ≈ 115332)
Kyber1024-90s

Sizes (in Bytes) Haswell Cycles (ref) Haswell Cycles (AVX2)
sk: 3168 (or 32) gen: 636380 gen: 43212

pk: 1568 enc: 672644 enc: 56556

ct: 1568 dec: 724144 (or ≈ 1009448) dec: 44328 (or ≈ 71180)

17

Table 3: Cycle counts and RAM usage (in Bytes) for Kyber on a Cortex-M4 (STM32F407Discovery). The
“clean” implementation is a slightly modified C reference implementation from the PQClean project, the “m4”
implementation is optimized for the Cortex-M4. All benchmarks are obtained using the pqm4 framework.

Kyber512

M4 Cycles (clean) M4 RAM (clean) M4 Cycles (m4) M4 RAM (m4)
gen: 655595 6020 463068 2844

enc: 865256 8668 561518 2484

dec: 961648 9444 519237 2508

Kyber768

M4 Cycles (clean) M4 RAM (clean) M4 Cycles (m4) M4 RAM (m4)
gen: 1087897 10052 756224 3292

enc: 1373744 13212 915676 2980

dec: 1491214 14308 853001 3004

Kyber1024

M4 Cycles (clean) M4 RAM (clean) M4 Cycles (m4) M4 RAM (m4)
gen: 1696314 15180 1213303 3804

enc: 2057522 18844 1407769 3492

dec: 2199958 20420 1326409 3516

on [26] with the improvements from [9] and the round-3 tweaks applied. All benchmarks are obtained using
the pqm4 framework [58] on an STM32F407 Discovery board. The two implementations are also included
in the submission package. They do not include standalone main functionality, but instead are assumed to
be used within pqm4. We do not report benchmarks of the 90s version of Kyber from the Cortex-M4 here,
because pqm4 does not yet include a constant-time implementation of AES.

3 Known Answer Test values
All KAT values are included in subdirectories of the directory KAT of the submission package. Specifically, the
KAT values of Kyber512 are in the subdirectory KAT/kyber512; the KAT values of the Kyber512-90s are
in the subdirectory KAT/kyber512-90s; the KAT values of Kyber768 are in the subdirectory KAT/kyber768;
the KAT values of the Kyber768-90s are in the subdirectory KAT/kyber768-90s; the KAT values of Ky-
ber1024 are in the subdirectory KAT/kyber1024; and the KAT values of the Kyber1024-90s are in the
subdirectory KAT/kyber1024-90s. Each of those directories contains the KAT values as generated by the
PQCgenKAT_kem program provided by NIST. Specifically, those files are:

• KAT/kyber512/PQCkemKAT_1632.req,

• KAT/kyber512/PQCkemKAT_1632.rsp,

• KAT/kyber512-90s/PQCkemKAT_1632.req,

• KAT/kyber512-90s/PQCkemKAT_1632.rsp,

• KAT/kyber768/PQCkemKAT_2400.req,

• KAT/kyber768/PQCkemKAT_2400.rsp,

• KAT/kyber768-90s/PQCkemKAT_2400.req,

18

• KAT/kyber768-90s/PQCkemKAT_2400.rsp,

• KAT/kyber1024/PQCkemKAT_3168.req,

• KAT/kyber1024/PQCkemKAT_3168.rsp,

• KAT/kyber1024-90s/PQCkemKAT_3168.req, and

• KAT/kyber1024-90s/PQCkemKAT_3168.rsp,

4 Expected security strength

4.1 Security definition
Kyber.CCAKEM (or short, Kyber) is an IND-CCA2-secure key encapsulation mechanism, i.e., it fulfills
the security definition stated in Section 4.A.2 of the Call for Proposals.

4.2 Rationale of our security estimates
Our estimates of the security strength for the three different parameter sets of Kyber—and consequently
the classification into security levels as defined in Section 4.A.5 of the Call for Proposals—are based on the
cost estimates of attacks against the underlying module-learning-with-errors (MLWE) problem as detailed
in Subsection 5.1.

To justify this rationale, we will in the following give two reductions from MLWE: a tight reduction in
the random-oracle model (ROM) in Theorem 2 and a non-tight reduction in the quantum-random-oracle
model (QROM) in Theorem 3. With those reductions at hand, there remain two avenues of attack that
would break Kyber without solving the underlying MLWE problem, namely

1. breaking one of the assumptions of the reductions, in particular attacking the symmetric primitives
used in Kyber; or

2. exploiting the non-tightness of the QROM reduction.

We briefly discuss 1.) in Subsection 5.4. The discussion of 2.) requires considering two separate issues,
namely

• a (quadratic) non-tightness in the decryption-failure probability of Kyber.CPAPKE, and

• a (quadratic) non-tightness between the advantage of the MLWE attacker and the quantum attacker
against Kyber.

In Subsection 5.5 we discuss quantum attacks exploiting decryption failures and in the presentation of the
non-tight QROM reduction we explain why the non-tightness between quantum attacks against MLWE
and quantum attacks against Kyber is unlikely to matter in practice. More specifically, we show how to
eliminate this non-tightness if we allow the reasonable, but non-standard, assumption that Kyber.CPAPKE
ciphertexts are pseudorandom, even if all randomness is generated pseudorandomly from a hash of the
encrypted message.

4.3 Security Assumption
The hard problem underlying the security of our schemes is Module-LWE [27, 66]. It consists in distinguishing
uniform samples (ai, bi) ← Rkq × Rq from samples (ai, bi) ∈ Rkq × Rq where ai ← Rkq is uniform and
bi = aTi s + ei with s← Bkη common to all samples and ei ← Bη fresh for every sample. More precisely, for
an algorithm A, we define Advmlwe

m,k,η(A) =∣∣∣∣Pr

[
b′ = 1 :

A← Rm×kq ; (s, e)← βkη × βmη ;
b = As + e; b′ ← A(A,b)

]
− Pr

[
b′ = 1 : A← Rm×kq ;b← Rmq ; b′ ← A(A,b)

]∣∣∣∣ .
19

4.3.1 Tight reduction from MLWE in the ROM

We first note that Kyber.CPAPKE is tightly IND-CPA secure under the Module-LWE hardness assumption.

Theorem 1. Suppose XOF and G are random oracles. For any adversary A, there exist adversaries B and
C with roughly the same running time as that of A such that Advcpa

Kyber.CPAPKE(A) ≤ 2 · Advmlwe
k+1,k,η(B) +

Advprf
PRF(C).

The proof of this theorem is easily obtained by noting that, under the MLWE assumption, public-key
and ciphertext are pseudo-random.

Kyber.CCAKEM is obtained via a slightly tweaked Fujisaki-Okamoto transform [54, 46] applied to
Kyber.CPAPKE. The following concrete security statement proves Kyber.CCAKEM’s IND-CCA2-security
when the hash functions G and H are modeled as random oracles. It is obtained by combining the generic
bounds from [54] with Theorem 1 (and optimizing the constants appearing in the bound).

Theorem 2. Suppose XOF, H, and G are random oracles. For any classical adversary A that makes at most
qRO many queries to random oracles XOF, H and G, there exist adversaries B and C of roughly the same
running time as that of A such that

Advcca
Kyber.CCAKEM(A) ≤ 2Advmlwe

k+1,k,η(B) + Advprf
PRF(C) + 4qROδ.

Note that the security bound is tight. The negligible additive term 4qROδ stems from Kyber.CPAPKE’s
decryption-failure probability δ.

4.3.2 Non-tight reduction from MLWE in the QROM

As for security in the quantum random oracle model (QROM), [54, 96] proved that Kyber.CCAKEM is IND-
CCA2 secure in the QROM, provided that Kyber.CPAPKE is IND-CPA secure. A slightly tighter reduction
can be obtained by requiring the base scheme Kyber.CPAPKE to be pseudo-random. Pseudo-randomness
[96] requires that, for every messagem, a (randomly generated) ciphertext (c1, c2)← Kyber.CPAPKE.Enc(pk ,m)
is computationally indistinguishable from a random ciphertext of the form (Compressq(u, du),Compressq(v, dv)),
for uniform (u, v). (We also require the property of “statistical disjointness” [96] which is trivially fulfilled for
Kyber.CPAPKE.) The proof of Kyber.CPAPKE’s IND-CPA security indeed shows that Kyber.CPAPKE is
tightly pseudo-random under the Module-LWE hardness assumption.

Theorem 3. Suppose XOF, H, and G are random oracles. For any quantum adversary A that makes at
most qRO many queries to quantum random oracles XOF, H and G, there exist quantum adversaries B and
C of roughly the same running time as that of A such that

Advcca
Kyber.CCAKEM(A) ≤ 4qRO ·

√
Advmlwe

k+1,k,η(B) + Advprf
PRF(C) + 8q2ROδ.

Unfortunately, the above security bound is non-tight and therefore can only serve as an asymptotic
indication of Kyber.CCAKEM’s CCA-security in the quantum random oracle model.

Tight reduction under non-standard assumption. We can use [54, 96] to derive a tight security
bound in the QROM from a non-standard security assumption, namely that a deterministic version of
Kyber.CPAPKE, called DKyber.CPAPKE, is pseudo-random in the QROM. Deterministic Kyber.CPAPKE
is defined as Kyber.CPAPKE, but the random coins r used in encryption are derived deterministically
from the message m as r := G(m). Pseudo-randomness for deterministic encryption states that an en-
cryption (c1, c2) of a randomly chosen message is computationally indistinguishable from a random cipher-
text (Compressq(u, du),Compressq(v, dv)), for uniform (u, v). In the classical ROM, pseudo-randomness of
DKyber.CPAPKE is tightly equivalent to MLWE but in the QROM the reduction is non-tight (and is the

reason for the term qRO ·
√

Advmlwe
k+1,k,η(B) in Theorem 3). Concretely, we obtain the following bound:

Advcca
Kyber.CCAKEM(A) ≤ 2Advmlwe

k+1,k,η(B) + Advpr
DKyber.CPAPKE(C) + Advprf

PRF(D) + 8q2ROδ.

We remark that we are not aware of any quantum attack on deterministic Kyber.CPAPKE that performs
better than breaking the MLWE problem.

20

Table 4: Classical and quantum hardness of the different proposed parameter sets of Kyber together with
the claimed security level as defined in Section 4.A.5 of the Call for Proposals.

Kyber512 Kyber768 Kyber1024

NIST Security level 1 3 5

Core-SVP methodology, Primal attack only (Sec. 5.1.4)
lattice attack dim. d 1003 1424 1885
BKZ-blocksize β 403 625 877

core-SVP classical hardness 118 182 256
core-SVP quantum hardness 107 165 232

Refined estimate for classical attacks using [40, 36, 5] (Sec. 5.2)
lattice attack dim. d 1025 1467 1918
BKZ-blocksize β 413 637 894

sieving dimension β′ = β − d4f 375 586 829
log2(gates) 151.5 215.1 287.3

log2(memory in bits) 93.8 138.5 189.7

4.4 Estimated security strength
Table 4 lists the security levels according to the definition in Section 4.A.5 of the Call for Proposals for the
different parameter sets of Kyber. Our claims are based on the cost estimates of the best known attacks
against the MLWE problem underlying Kyber as detailed in Subsection 5.1. Specifically we list the classical
and the quantum core-SVP hardness and use those to derive security levels.

All parameter sets of Kyber have some probability of decryption failure. These failures are a security
concern (see Section 5.5) and so the probabilities with which they occur need to be small. But because in
the classical random oracle model, the decryption failure probability is information-theoretic, we do not see
a need for it to decrease with the security parameter. In particular, decryption failure for our level 3 and 5
parameter sets is less than 2−160, which means that if 280 instances of Kyber were run every second from
now until our sun becomes a white dwarf, the odds still heavily favor there never being a decryption failure.
We therefore exclude these attacks from our claims regarding the NIST security estimates.

The impact of the deterministic noise caused by Compressq on Kyber512. Each coefficient of e1
(and e2) in Algorithm 5 is distributed as a binomial distribution with parameter η2 = 2, which has variance
η2/2 = 1. The parameter du = 10 implies that the Compressq function maps elements modulo q to a set of
size 210. When this set is mapped back to Zq via the Decompressq function, the difference between every two
elements in the latter set is either 3 or 4. This implies that the error created by the Compressq function for
each coefficient is either uniform over {−1, 0, 1}, {−1, 0, 1, 2}, or {−2,−1, 0, 1}. It therefore has variance at
least as large as the uniform distribution over the set {−1, 0, 1}, which is 2/3. This makes the total variance
of each coefficient of e1 plus the deterministic error at least 1 + 2/3 = 5/3. The other secret and noise terms
have binomial distributions with parameter η1 = 3 for a variance of η1/2 = 3/2 < 5/3. When accounting for
the errors added by Compressq, we therefore calculate the hardness of Kyber512 assuming that it is as hard
as Module-LWE where the variance of each secret/error coefficient is 3/2.

We now make the above discussion more precise. We define the Module-LWER problem as the problem
of distinguishing samples (ai,Compressq(bi, d)) for random (ai, bi)← Rkq ×Rq from samples where ai ← Rkq
and bi = aTi s + ei with s ← Bkη1 common to all samples and ei ← Bη2 fresh for every sample.3 Using the

3This problem generalizes both Module-LWE and Module-LWR. When ei = 0, this problem is Module-LWR, whereas when

21

same terminology as in the beginning of Section 4.3, we define the advantage of an algorithm A breaking
Module-LWER as Advmlwer

m,k,η1,η2,d(A) =∣∣∣∣Pr

[
b′ = 1 :

A← Rm×kq ; (s, e)← βkη1 × β
m
η2 ;

b = As + e; b′ ← A(A,Compressq(b, d))

]
− Pr

[
b′ = 1 :

A← Rm×kq ;b← Rmq ;
b′ ← A(A,Compressq(b, d))

]∣∣∣∣ .
In addition to the parameters in the Module-LWE problem, the Module-LWER problem has the additional

parameter d which defines the range (i.e., {0, . . . , 2d − 1}) of the Compressq function. Also, the η parameter
is split into η1, which defines the distribution of s, and η2, which defines the distribution of e. The intuition
for having η1 6= η2 is that the Compressq function creates another noise vector e′ which gets added to e (we

discuss this in more detail below), and so the short target vector crucial for the lattice attack is
[

s
e + e′

]
. If

we would like to have this vector be balanced, we should set η1 > η2.
We can then obtain the analogues of Theorems 1 and 2 with the term 2Advmlwe

k+1,k,η(B) being replaced by

Advmlwe
k,k,η1(B) + Advmlwer

k+1,k,η1,η2,du(B′), (6)

where the Module-LWE assumption is used in the key generation (as before) and the Module-LWER as-
sumption is used in the encryption. We now assess the security of the Module-LWER problem. First,
when η1 ≥ η2, any algorithm B for Module-LWE implies an algorithm A for Module-LWER such that
Advmlwer

m,k,η1,η2,d(A) ≤ Advmlwe
m,k,η2(B). When η1 > η2, as in the Kyber512 parameter set, the preceding in-

equality ignores the fact that having a larger s in the Module-LWER instance makes the short target lattice
vector longer. And when d < log q, the inequality similarly ignores the fact that the adversary A only gets
to see (A, t = Compressq(As + e, d)) rather than (A,As + e). If we use this rough inequality, then for our
Kyber512 parameters we would have the Core-SVP classical hardness of the Module-LWER problem be
112. So the logarithm of the required number of gates stated in the Kyber512 column of Table 4 would
decrease by 6 to approximately 145.

We argue, however, that based on the current state of knowledge of lattice attacks, the Module-LWER
problem with Kyber512 parameters is somewhat harder. In particular, we contend that it is at least as
hard as the Module-LWE problem where s, e ← η1. This implies that (6)≤ 2Advmlwe

k+1,k,η1(B). If we then
analyze the hardness of Module-LWE with these parameters, we get the numbers in Table 4.

The quantity that determines the efficacy of the attacks (in terms of the Core-SVP measurement) against

the Module-LWE problem is the norm of the vector
[
s
e

]
where As + e = b over the ring Rq. In order to

create such an equation out of a Module-LWER instance, we map t = Compressq(As+e, d) to Rq by applying
Decompressq(t, d), which allows us to write As+ e+ e′ = t, where s← βkη1 , e← βmη2 and e′ is the additional
error term caused by the compression. Without knowledge of s and e, such a mapping is the best that one
can use to minimize the norm of e′. To finish our argument, it would suffice to show that the vector e + e′

has larger norm than a vector whose coefficients are drawn from the distribution βη1 . For this, we use the
heuristic assumption that e′ is independent of s and e and each of its coefficients has the distribution

Decompressq
(
Compressq(x, d), d

)
− x mod±q; x← Zq.4 (7)

When d = du = 10 and q = 3329 are as in the Kyber512 parameter set, then the distribution in (7) is:

Pr[e′ ∈ {−2, 2}] =
257

3329
, Pr[e′ ∈ {−1, 1}] =

2048

3329
, Pr[e′ = 0] =

1024

3329
. (8)

Using the above distribution on the coefficients of e′ and the fact that each coefficient of e comes from
the distribution βη2 , we can exactly compute the distribution of the squared norm of e + e′. In Table
5, we compare some bounds of this distribution with that of a 512-dimensional vector whose coefficients
are all chosen from βη1 . It can be seen from the table that the norm of the vector generated as e + e′

is noticeably larger, at all probabilities, than the one generated from βη1 . In fact, because the variance
of each coefficient of e is 1 and of the distribution in (8) (when the probabilities of the ± coefficients are

the compression coefficient d is greater than log q, this is the Module-LWE problem.
4This assumption (with e = 0) is also used in the security and decryption error analysis of (Module)-LWR problems.

22

p 2−1 2−30 2−60 2−90 2−120

max α s.t. PrX=e+e′;e←β512
η2

,e′←(8)[‖X‖2 < α] < p 984 679 561 480 419

max α s.t. PrX←β512
η1

[‖X‖2 < α] < p 767 529 436 373 325

Table 5: Probability bounds on ‖X‖2 when X is distributed as e + e′ or as a binomial. For example, when
X = e + e′, then Pr[‖X‖2 < 561] < 2−60 while Pr[‖X‖2 < 562] ≥ 2−60.

balanced) is approximately 0.9, the distribution of e+ e′ behaves very similarly to a Gaussian with variance
approximately 1.9. It is therefore reasonable to assume that this error distribution makes the problem harder
than if the distribution were β3, which behaves similarly to a continuous Gaussian of variance 1.5. In short,
by also accounting for the rounding error e′, we gain an additional 6 bits of security with respect to the
currently-best attacks.

The impact of MAXDEPTH. The best known quantum speedups for the sieving algorithm, which we
consider in our cost analysis (see Subsection 5.1.1), are only mildly affected by limiting the depth of a quantum
circuit, because it uses Grover search on sets of small size (compared to searching through the whole keyspace
of AES). For the core-SVP-hardness operation estimates to match the quantum gate cost of breaking AES at
the respective security levels, a quantum computer would need to support a maximum depth of 70–80. When
limiting the maximum depth to smaller values, or when considering classical attacks, the core-SVP-hardness
estimates are smaller than the gate counts for attacks against AES. Recent study [5] on the concrete cost of
sieving suggest that the quantum speed-ups of these algorithms are tenuous, independently of the value of
MAXDEPTH.

4.5 Additional security properties
4.5.1 Forward secrecy.

Kyber has a very efficient key-generation procedure (see also Section 2) and is therefore particularly well
suited for applications that use frequent key generations to achieve forward secrecy.

4.5.2 Side-channel attacks.

Timing attacks. Neither straight-forward reference implementations nor optimized implementations of
Kyber use any secret-dependent branches or table lookups5.This means that typical implementations of
Kyber are free from the two most notorious sources of timing leakage. Another possible source of timing
leakage are non-constant-time multipliers like the UMULL instruction on ARM Cortex-M3 processors, which
multiplies two 32-bit integers to obtain a 64-bit result. However, multiplications in Kyber have only 16-bit
inputs, and most non-constant-time multipliers show timing variation only for larger inputs. For example, on
ARM Cortex-M3 processors the obvious way to implement multiplications in Kyber is through the constant-
time MUL instruction, which multiplies two 32-bit integers, but returns only the bottom 32-bits of the result.
What remains as a source of timing leakage are modular reductions, which are sometimes implemented via
conditional statements. However, timing leakage in modular reductions is easily avoided by using (faster)
Montgomery [78] and Barrett reductions [16] as illustrated in our reference and AVX2 implementations.

We note that the 90s variant is only really attractive to use if AES hardware support is available. If
hardware support is not available, then table-based implementations of AES are notorious for leaking secrets
trough cache timing. In our C reference implementation of the 90s variant we use a constant-time bitsliced
implementation of AES, which is based on code from BearSSL [90].

Differential attacks. We expect that any implementation of Kyber without dedicated protection against
differential power or electromagnetic radiation (EM) attacks will be vulnerable to such attacks. This is true
for essentially any implementation of a cryptographic scheme that uses long-term (non-ephemeral) keys.
Deployment scenarios of Kyber in which an attacker is assumed to have the power to mount such an attack

5Note that the rejection sampling in generating the matrix A does not involve any secret data.

23

require specially protected—typically masked—implementations. In [82], Oder, Schneider, Pöppelmann, and
Güneysu present such a masked implementation of Ring-LWE decryption with a CCA transform very similar
to the one used in Kyber. The implementation targets Cortex-M4F microcontrollers; the conclusion of the
work is that protecting the decryption (decapsulation) step against first-order DPA incurs an overhead of
about about a factor of 5.5. The techniques presented in that paper also apply to Kyber and we expect
that the overhead for protecting Kyber against differential attacks is in the same ballpark.

Template attacks. Protections against differential attacks do not help if an attacker is able to recover even
ephemeral secrets from a single power or EM trace. At CHES 2017, Primas, Pessl, and Mangard presented
such a single-trace attack against an implementation of Ring-LWE on a Cortex-M4F microcontroller [91].
The attacker model in this attack is rather strong: it is the typical setting of template attacks, which assumes
an attacker who is able to generate template traces on known inputs on a device with leakage very similar
to the actual target device. In [91], the authors used the same device for generating target traces and in the
attack. The attack was facilitated (maybe even enabled) by the fact that the implementation under attack
used variable-time modular reductions. Consequently, the paper states that “One of the first measures to
strengthen an implementation against SPA attacks is to ensure a constant runtime and control flow”. This is
the case for all implementations of Kyber. The attack from [91] would thus certainly not straight-forwardly
apply to implementations of Kyber, but more research is required to investigate whether also constant-time
implementations of Kyber (and other lattice-based schemes) succumb to template attacks, and what the
cost of suitable countermeasures is.

4.5.3 Multi-target attacks

Our security analysis makes no formal claims about security bounds in the multi-target setting. However,
in the design of Kyber we made two decisions that aim at improving security against attackers targeting
multiple users:

• We adopt the “against-all-authority” approach of re-generating the matrix A for each public key from
NewHope [10]. This protects against an attacker attempting to breakmany keys at the cost of breaking
one key.

• In the CCA transform (see Alg. 8) we hash the public key into the pre-key K̄ and the coins r. Making
the coins r dependent of the public key protects against precomputation attacks that attempt to break
one out of many keys. For details, see Subsection 5.5.

4.5.4 Misuse resilience

The first, and most important, line of defense against misuse is the decision to make IND-CCA2 security
non-optional. As discussed in Subsection 1.5, it would have been possible to achieve slightly shorter public
keys and ciphertexts, and faster decapsulation, in a CPA-secure variant of Kyber. Using IND-CCA2 security
by default makes it safe to use Kyber with static keys and as a consequence also to re-use ephemeral keys
for some time. What is not safe, is to reuse the same randomness in encapsulation, but that randomness is
also not exposed to the outside by the API. The CCA transform has a second effect in terms of robustness:
it protects against a broken implementation of the noise sampling. A rather peculiar aspect of LWE-based
cryptography is that it will pass typical functional tests even if one communication partner does not add any
noise (or by accident samples all-zero noise). The deterministic generation of noise via SHAKE-256 during
encapsulation and the re-encryption step during decapsulation will reveal such an implementation mistake
immediately.

An additional line of defense against misuse is to hash the public-key into the “pre-key” K̄ and thus
make sure that the KEM is contributory. Only few protocols require a KEM to be contributory and those
protocols can always turn a non-contributory KEM into a contributory one by hashing the public key into
the final key. Making this hash part of the KEM design in Kyber ensures that nothing will go wrong on
the protocol level if implementers omit the hash there.

A similar statement holds for additionally hashing the ciphertext into the final key. Several protocols
need to ensure that the key depends on the complete view of exchanged protocol messages. This is the
case, for example, for the authenticated-key-exchange protocols described in the Kyber paper [24, Sec. 5].

24

Hashing the full protocol view (public key and ciphertext) into the final key already as part of the KEM
makes it unnecessary (although of course still safe) to take care of these hashes on the higher protocol layer.

5 Analysis with respect to known attacks

5.1 Attacks against the underlying MLWE problem

MLWE as LWE. The best known attacks against the underlying MLWE problem in Kyber do not make
use of the structure in the lattice. We therefore analyze the hardness of the MLWE problem as an LWE
problem. We briefly discuss the current state of the art in algebraic attacks, i.e., attacks that exploit the
structure of module lattices (or ideal lattices) at the end of this subsection.

5.1.1 Attacks against LWE

Many algorithms exist for solving LWE (for a survey see [7]), but many of those are irrelevant for our
parameter set. In particular, because there are only

m = (k + 1)n

LWE samples available to the attacker, we can rule out BKW type of attacks [59] and linearization at-
tacks [13]. This essentially leaves us with two BKZ [97, 32] attacks, usually referred to as primal and dual
attacks that we will recall in Subsections 5.1.2 and 5.1.3.

The algorithm BKZ proceeds by reducing a lattice basis using an SVP oracle in a smaller dimension b.
It is known [52] that the number of calls to that oracle remains polynomial, yet concretely evaluating the
number of calls is rather painful, and this is subject to new heuristic ideas [32, 31, 11].

We start with an analysis that ignores this polynomial factor, i.e. only considers the cost of a single call
to an SVP oracle in dimension b. We will also use for now a very simple cost estimate for the hardness of
SVP. This core-SVP hardness methodology was introduced in [10, Sec. 6], as a simple way of estimating
security. In the light of the cryptanalytic progress that happened during the NIST evaluation Rounds 1 and
2, we consider that this method remains informative, but too coarse to produce accurate security estimates,
especially the for security against classical attackers. This will be addressed by the new Section 5.2, added
for the Round 3.

Enumeration vs. sieving. There are two algorithmic approaches for the SVP oracle in BKZ: enumeration
and sieving algorithms. These two classes of algorithms have very different performance characteristics and,
in particular for sieving, it is hard to predict how practical performance scales from lattice dimensions that
have been successfully tackled to larger dimensions that are relevant in attacks against cryptosystems like
Kyber. The starting point of such an analysis is the fact that enumeration algorithms have super-exponential
running time, while sieving algorithms have only exponential running time. Experimental evidence from
typical implementations of BKZ [48, 32, 38] shows that enumeration algorithms are more efficient in “small”
dimensions, so one question is at what dimension sieving becomes more efficient. At the beginning of the
NIST PQC project, the best known sieving techniques were slower in practice for accessible dimensions of
up to b ≈ 130.

The work [40] showed (in the classical setting) that sieving techniques can be sped up in practice for
exact-SVP, becoming less than an order of magnitude slower than enumeration already in dimension 60 to 80.
One reason for the improvement is the “dimensions-for-free” technique, allowing to solve SVP in dimension b
by sieving in a sligthly smaller dimension b′ = b− d4f. Further algorithmic and implementation efforts have
finally managed to get sieving to outperform enumeration in practice [4], with a cross-over around dimension
80.

The hardness estimation is complicated by the fact that sieving algorithms are much more memory
intensive than enumeration algorithms. Specifically, sieving algorithms have exponential complexity not
only in time, but also in memory, while enumeration algorithms require only small amounts of memory.
In practice, the cost of access to memory increases with the size of memory, which typically only becomes
noticeable once the memory requirement exceeds fast local memory (RAM). There is no study, yet, that
investigates the algorithmic optimization and practical performance of sieving using slow background storage.

25

We follow the approach of [10, Sec. 6] to obtain a conservative lower bound on the performance of both
sieving and enumeration for the dimensions that are relevant for the cryptanalysis of Kyber. This approach
works in the RAM model, i.e., it assumes that access into even exponentially large memory is free.

A lot of recent work has pushed the efficiency of the original lattice sieving algorithms [81, 77], improving
the heuristic complexity from (4/3)b+o(b) ≈ 20.415b+o(b) down to

√
3/2

b+o(b)
≈ 20.292b+o(b) using locality-

sensitive hashing (LSH) techniques [62, 17]. Without the dimensions-for-free technique, the hidden sub-
exponential factors are typically much greater than 1 in practice [76, 40].

Most of the sieving algorithms have been shown [64, 61] to benefit from Grover’s quantum search algo-
rithm, bringing the complexity down to 20.265b+o(b). However, a concrete analysis shows that, in practice,
the quantum speed-up remains tenuous [5].

For our first analysis, we will use 20.292b as the classical and 20.265b and the quantum cost estimate of
both the primal and dual attacks with block size (dimension) b. We recall those two attacks in the following.

5.1.2 Primal attack.

The primal attack consists of constructing a unique-SVP instance from the LWE problem and solving it using
BKZ.We examine how large the block dimension b is required to be for BKZ to find the unique solution. Given
the matrix LWE instance (A,b = As+e) one builds the lattice Λ = {x ∈ Zm+kn+1 : (A|Im|−b)x = 0 mod q}
of dimension d = m+kn+1, volume qm, and with a unique-SVP solution v = (s, e, 1) of norm λ ≈ ς

√
kn+m,

where ς is the standard deviation (i.e., the square root of the variance) of the individual secret / error
coefficients. Note that the number of used samples m may be chosen between 0 and (k+ 1)n in our case and
we numerically optimize this choice.

Success condition. We model the behavior of BKZ using the geometric series assumption (which is known
to be optimistic from the attacker’s point of view), that finds a basis whose Gram-Schmidt norms are given
by ‖b?i ‖ = δd−2i−1 ·Vol(Λ)1/d, where δ = ((πb)1/b · b/2πe)1/2(b−1) [31, 7]. The unique short vector v will be
detected if the projection of v onto the vector space spanned by the last b Gram-Schmidt vectors is shorter
than b?d−b. Its projected norm is expected to be ς

√
b, that is, the attack is successful if and only if

ς
√
b ≤ δ2b−d−1 · qm/d. (9)

We note that this analysis introduced in [10] differs and is more conservative than prior works, which
were typically based on the hardness of unique-SVP estimates of [47]. The validity of the new analysis has
been confirmed by further analysis and experiments in [6].

5.1.3 Dual attack

The dual attack consists of finding a short vector in the dual lattice w ∈ Λ′ = {(x,y) ∈ Zm × Zkn : Atx =
y mod q}. Assume we have found a vector (x,y) of length ` and compute z = vt · b = vtAs + vte =
wts + vte mod q, which is distributed as a Gaussian of standard deviation `ς if (A,b) is indeed an LWE
sample (otherwise it is uniform mod q). Those two distributions have maximal variation distance bounded
by ε = 4 exp(−2π2τ2), where τ = `ς/q, that is, given such a vector of length ` one has an advantage ε against
decision-LWE.

The length ` of a vector given by the BKZ algorithm is given by ` = ‖b0‖. Knowing that Λ′ has dimension
d = m+ kn and volume qkn we get ` = δd−1qkn/d. Therefore, obtaining an ε-distinguisher requires running
BKZ with block dimension b, where

− 2π2τ2 ≥ ln(ε/4). (10)

Note that small advantages ε are not relevant since the agreed key is hashed: an attacker needs an advantage
of at least 1/2 to significantly decrease the search space of the agreed key. He must therefore amplify his
success probability by building about 1/ε2 many such short vectors. Because the sieving algorithms provides
20.2075b vectors, the attack must be repeated at least R times where

R = max(1, 1/(20.2075bε2)).

This makes the conservative assumption that all the vectors provided by the Sieve algorithm are as short as
the shortest one.

26

5.1.4 Core-SVP hardness of Kyber

In Table 4 we list the classical and quantum core-SVP-hardness of the three parameter sets of Kyber. The
lower bounds of the cost of the primal and dual attack were computed following the approach outlined above
using the analysis script Kyber.py that is available online at https://github.com/pq-crystals/kyber/
tree/master/scripts/.

5.2 Beyond core-SVP hardness
At the time the core-SVP hardness measure was introduced by [10], the best implementations of sieving [17,
76] had performance significantly worse than the 2.292b CPU cycles proposed as a conservative estimate by
this methodology. This was due to substantial polynomial or even sub-exponential overheads hidden in the
complexity analysis of 2.292b+o(b) given in [17]. Before this [10] proposed the core-SVP approach, security
estimates of lattice schemes were typically based on the cost of SVP via enumeration given in [32, 7], leading
to much more aggressive parameters. Beyond the cost of SVP-calls, this methodology also introduced a
different prediction of when BKZ solves LWE, which was later confirmed [6] and refined [36].

While doubts were expressed to whether sieving would ever outperform the super-exponential, yet practi-
cally smaller, costs of enumeration [32] for relevant cryptographic dimensions, significant progress on sieving
algorithms [40, 4] has brought down the cross-over point down to dimension about b = 80. In fact, the
current SVP records are now held by algorithms that employ sieving6. This progress mandates a revision
and refinement of Kyber security estimates, especially regading classical attacks. In particular, while it was
pretty clear from experiments than the costs hidden in the o(b) before those improvement were positive both
in practice and asymptotically, the dimensions-for-free technique of [40] offers a sub-exponential speed-up,
making it a priori unclear whether the total o(b) term is positive or negative, both asymptotically and
concretely.

In summary, while the core-SVP methodology introduced 5 years ago has pushed designers to be more
conservative than previously, it now appears this estimation technique is too coarse to produce accurate
security estimates. In the following, we give a refined analysis based on the latest developments described
in the literature. We complement this with a discussion of all the approximations, simplifications and
foreseeable developments that remain to be explored.

We also note that the choice of the gate count metric was recently discussed in the NIST PQC forum
mailing list, and in the case of the algorithm of [17], we do not believe this metric to be very realistic. However,
it appears that alternative metrics unavoidably involve physical and technological constants (speed of light,
density of information, energy efficiency of gates and data transfers). There seems to be no clear consensus
on what some those constants would be with current technology, let alone future technologies. These other
metrics would also greatly increase the complications involved in the already delicate tuning and analysis of
sieving.

In the following subsection we therefore discuss the current understanding of attacks against Kyber in
the gate-count metric. We focus the discussion on the concrete case of Kyber512. This preliminary analysis
gives a cost of 2151 gates, which is a 28 factor margin over the targeted security of the 2143 gates required for
attacks against AES. Our discussion of the ‘known unknowns’ conclude that this number could be affected
by a factor of up to 216 in either direction. While there is a risk to see the security claim drop below the 2143

bar in the gate count metric, one should consider the choice of the gate count metric itself as a substantial
margin. We do not think that even a drop as large as 216 would be catastrophic, in particular given the
massive memory requirements that are ignored in the gate-count metric. Having listed and documented the
sources of uncertainties, we hope that many of them can be tackled in the months to come, to narrow the
“confidence interval”.

5.2.1 A tentative gate-count estimate accounting for recent progress

For concreteness, we focus this discussion to the case of Kyber512. Let us start by defining the progressivity
overhead C = 1/(1 − 2−.292) = 5.46, that is the limit of ratio between

∑
i≤b 2.292i+o(i) and 2.292b+o(b) as b

grows.
6https://www.latticechallenge.org/svp-challenge/

27

https://github.com/pq-crystals/kyber/tree/master/scripts/
https://github.com/pq-crystals/kyber/tree/master/scripts/
https://www.latticechallenge.org/svp-challenge/

Primal Attack Only. Our first point is that, while the core-SVP hardness methodology suggest that
the dual attack is slightly cheaper than the primal one, it is in fact significantly more expensive. Indeed,
the analysis of the dual attack of [10] (repeated above) assumes that one gets exponentially many vectors
from sieving in the first block that will be as short as the shortest one. In fact, most of them will have a
length

√
4/3 larger. Furthermore, the assumption that we obtain exponentially many such short vectors

is incompatible with some of the latest sieving improvements, specifically the dimensions-for-free techinque
from [40]. We note that the analysis from [2], which does not assume those extra short vectors, indeed does
predict much larger cost for the dual attack than the primal.

BKZ simulation. The analysis of the BKZ success condition from [10, 6] is based on the so called
geometric-series assumption, an assumption that has several inaccuracies; in particular it misses a “tail”
phenomenon [98]. We instead rely on the simulator provided as part of the leaky-LWE-estimator of [36].
This simulator uses progressive-BKZ [11, 4], which we believe gives somewhat better performance than fixed-
block BKZ. It predicts a median success when reaching blocksize b = 413. Success grows by a factor of 1.373
from b = 412 to b = 413, which is larger than the cost factor of 20.292 ≈ 1.224: aiming at lower blocksize and
retrying is not a worthy strategy (it grows even faster for b < 412). The overall dimension of the lattice is
n = 1025.

The cost of progressive BKZ with sieving up to blocksize b is essentially C · (n− b) ≈ 3340 times the cost
of sieving for SVP in dimension b.

Dimensions for free. According to [40], the number of “dimensions for free” is d4f = b ln(4/3)
ln(b/(2πe))) , which is

d4f = 37.3 (or 38, rounding upward). That is, each SVP oracle call in dimension b = 413 will require running
sieving in dimension b′ = b− d4f = 375.

We note that [4, Fig. 5] obtains a few more dimensions for free in practice than [40] with two tricks:
“on-the-fly lifting” and “pump-down sieves”. In practice, this saves a bit of memory (2.5), and has no visible
effect on time. The trick at hand is really fit for CPUs (as it uses more floating-point arithmetic), and
probably less interesting for implementations in dedicated circuits (which favor XOR-popcounts).

Gate cost of sieving. Recent work [5] has proposed an analysis of the cost of sieving with a classical and
quantum circuit (with RAM access to data). More specifically, they focus on the analysis of a “AllPairSearch”
function, account for exact volumes of spherical caps and wedges, compute explicit gate counts for the
innermost loop operations (XOR-popcounts, inner products), and automatically tune parameters to obtain
concrete classical and quantum costs. Regarding the best classical algorithm, they conclude with a cost of
about 2137.4 gates for AllPairSearch in dimension 375.7

The work in [5] is motivated by the quantum/classical speed-up, therefore it does not consider the required
number of calls to AllPairSearch. Naive sieving requires a polynomial number of calls to this routine, however
this number of calls appears rather small in practice using progressive sieving [40, 63], and we will assume
that it needs to be called only once per dimension during progressive sieving, for a cost of C · 2137.4 gates8.

Final gate count. Overall, we conclude with a gate count of

G = (1025− 413) · C2 · 2137.4 = 2151.5.

We can also estimate the memory requirement following the analysis of [5], maybe working under the
assumption that each coordinate of a lattice vector used during the sieving can be represented within a byte.
Automatizing the above calculations,9 we obtain Table 4, summarizing the refined estimates for all three
parameter sets.

We also note that a similar refined count of quantum gates seems essentially irrelevant for our security
claim: the work of [5] concluded that quantum speed-up of sieving are rather tenuous, while the quantum
security target for each category is significantly lower than the classical target.

7This was interpolated from the datafile cost-estimate-list_decoding-classical.csv from the version of May 2020 of [5],
available at https://eprint.iacr.org/eprint-bin/getfile.pl?entry=2019/1161&version=20200520:144757&file=1161.pdf .
This datafile can be extracted from the pdf via the linux tool pdfdetach. Another version of that datafile is more easily
accessible at https://github.com/jschanck/eprint-2019-1161/blob/main/data/cost-estimate-list_decoding-classical.
csv, and differs from the one we used by less than a bit.

8This is using the fact inside BKZ, doing a single pump per SVP instance seems sufficient [2], while an isolated SVP instance
requires an extra progressive loop, called “work-out” on top of the “pump”. That is, an isolated SVP instance should have an
extra C factor.

9Scripts available at https://github.com/lducas/leaky-LWE-Estimator/tree/NIST-round3

28

https://eprint.iacr.org/eprint-bin/getfile.pl?entry=2019/1161&version=20200520:144757&file=1161.pdf
https://github.com/jschanck/eprint-2019-1161/blob/main/data/cost-estimate-list_decoding-classical.csv
https://github.com/jschanck/eprint-2019-1161/blob/main/data/cost-estimate-list_decoding-classical.csv
https://github.com/lducas/leaky-LWE-Estimator/tree/NIST-round3

5.3 Approximations, overheads, and foreseeable improvements
We now propose a list of research direction to refine the best attack or its cost estimation, together with an
educated guess of their potential concrete impact. We hope that this list of open problems may motivate
the community towards a more informed consensus on the actual cost of lattice attacks, that would apply
not only to Kyber, but to all lattice-based candidates in the NIST PQC standardization project.

Q1: Idealized Angles and Lengths. A first approximation made in the concrete analysis of [5] is that
all vectors have the same length, and therefore that a pair of vectors leads to a reduction precisely if they
have an angle below π/3. However, both heuristically and experimentally, this is not exactly true. Indeed,
the length of the sum ‖x± y‖ may be smaller than max(‖x‖, ‖y‖) despite an angle slightly larger than π/3
when ‖x‖ and ‖y‖ differ a bit. Furthermore, implementations such as [4] even relax the reduction condition,
and perform a reduction z ← x± y where z is neither x nor y, but the current worst vector of the database.

This approximation and relaxation may explain the discrepancy of about a factor of 8 between the
number of vectors required in the analysis [5] and the experiments up to dimension b = 120 [4]. However,
these reducing pairs at higher angles are a bit harder to detect with near-neighbors-search techniques.
Expected influence on memory estimate: A factor of 2−3.
Expected influence on gate-count estimate: A factor between 2−3 and 2−1.

Q2: Idealized near-neighbors search. The analysis of [5] assumes that the BDGL [17] sieve behaves as
if the buckets are perfectly uniformly distributed over the sphere; however the actual algorithm [17] must
resort to some structure in the way these buckets are distributed. The original analysis shows that this
structure does not affect the success probability of finding each pair by a factor more than subexponential
2Õ(
√
b) [17]. However, this asymptotic analysis may not be that tight, and indeed, preliminary experiments

suggest that this success-probability loss may not be so large in practice.
Furthermore, depending on the parametrization, this algorithm has overheads compared to the idealiza-

tion of [5]: minimizing memory requirement induces a 2O(b/ log(b)) overhead on time, which can in principle
be traded for an asymptotically similar memory overhead.
Expected influence on gate-count estimate: A factor of up to 25. (part of which tradeable for more
memory)

Q3: Saturation, collisions, and dimensions for free. Another question that affects the concrete perfor-
mance of the sieving is the delicate choice of when to stop it. In practice the latest implementations [40, 4]
chose to stop the sieving when a fraction s = 1/2 of the expected vectors of length

√
4/3 · GH has been

found.10 This means that the success probability of actually solving SVP with dimensions for free can de-
crease by a factor s (or maybe a bit less because in practice the sieving outputs about 6 times more vectors,
the remaining of which are a sligthly longer than

√
4/3 GH, and also have some probability of lifting to the

shortest vector).
On the other hand, stopping the sieving with a larger saturation value s also means that we observe

more collisions: a pair does reduces, but result more often in an already known vector, making it useless.
This must be compensated by enlarging the database, and/or running more reduction rounds. Preliminary
experiments showed that the frequency of collision can be significantly larger than s; this may be explained
by repeated reduction of the same pair, and the fact that the database tends to not be uniform over the ball,
and biased toward shorter vectors.
Expected influence on gate-count estimate: A factor between 2−1 and 22.

Q4: Number of calls to AllPairSearch. The number of calls to AllPairSearch at each step of Progressive
Sieving was assumed to be 1. This could be tested experimentally. It is not unthinkable that this is in fact
a fractional number less than 1, as, in progressive-sieving, the previous calls in lower dimension may already
provide a close to target set of vectors. Preliminary experiments suggest 1/3 or 1/2 in very small dimensions;
these experiments have been carried without NNS to avoid interference, and deserve to be extended.
Expected influence on gate-count estimate: A factor between 2−2 and 22.

Q5: Routing and Congestion (from RAM to circuit). As far as we understand, the sieving circuit
studied in [5] still considers RAM access, which, even in the gate count model, and without considering
speed-of-light delays easily underestimates cost. For example, once it has been determined in which bucket

10Here, GH denote the expected length of the shortest vector according to the Gaussian Heuristic.

29

a vectors belongs, there must be some routing logic to send it there; if there are 2x addresses, then the sent
bits must traverse at least O(x) gates. This gets quite more involved as several cores may want to send
data to the same bucket at the same time, inducing overheads for queuing logic and/or packet drops. Extra
logistic costs are also required in the bucket itself, and if the targeted bucket size is small, variations in the
actual numbers of vectors that reach a bucket may induce further overheads or packet drops.

Such logistic costs can be partially mitigated by re-tuning the algorithm: if, once bucketed, data is used
often enough, these overheads will become negligible. However, making buckets larger negatively impacts
algorithmic performance in the RAM model, and despite mitigation, some loss seems unavoidable. We note
that the current parametrization from [5] suggests to target an average bucket size of 32 in the relevant
dimensions, leading to each bit of data being used in 32 many XOR-popcounts. We do not think that this
parametrization makes logistic overheads negligible.
Expected influence on gate-count estimate: A factor between 22 and 28.

Q6: Beyond the gate-count metric. While we mostly stick to the gate-count metric in this discussion,
we note that the previous research question Q5 might be naturally paired with a similar study in other
metrics, maybe having physical and technological constants as parameters. In particular, we would like to
mention an ongoing implementation of Sieving with GPU, for which optimal performances are reached for
quite large bucket-size (say 215), and this despite using a single computation server (i.e., one is limited by
RAM to GPU-RAM bandwidth, and not network bandwidth).

Q7: Refined BKZ strategies. We note that there are ways to refine a bit the (progressive) BKZ strategy
used in the simulator of [36]. Indeed, a standard idea [67] is to run a single SVP call in a dimension that is
considerably larger than the BKZ blocksize after the BKZ preprocessing, in the hope to partially amortize
the (n − b) · C factor. While this has been used for sieving in practice [4] on LWE challenges, a precise
analysis of the gains in large dimensions is still missing. We note that this is a time-memory trade-off, as
this last SVP call will require more memory than the BKZ pre-processing.

Another folklore idea which remains to be documented and quantified, is to try to swap the “heads” and
“tails” of the BKZ profile [98], by instead running dual-BKZ as the pre-processing.

One could also tweak the progressive steps of the blocksize in progressive-BKZ, but our preliminary
experiments with the simulations of [36] was not suggesting that significant gains are to be expected there.
Expected influence on gate-count estimate: A factor between 2−8 and 2−2.

Q8: Module-BKZ in practice. It is known that sieving in cyclotomic/cyclic ideal lattices can benefit
from speed-ups and memory gain, namely a factor d can be saved on memory, and a factor between O(d)
and O(d2/ log d) can be gained depending on whether Near Neighboor Search techniques are used or not.
Namely, the symmetries of those lattices allows to get of full orbit of d vectors of the same length for the
price of 1.

In principle, the same gains apply to module lattices of dimension b = kd, growing with the module
dimension d. It was mentioned on the NIST pqc-forum11 that a module variant of BKZ could exists, and
therefore that its internal SVP oracle could benefit from symmetries. This is confirmed by the theoretical
work of [79].

However, there are numerous issues that are likely to prevent substantial gain from this approach. The
first one is that one is now very constrained in terms of blocksize: to run module-BKZ with blocksize b on
Kyber, one must rely on a sub-module structure of dimension d = gcd(b, 256). This may force one to over or
undershoot the optimal block-size for the attack, and leaves less flexibility, especially for progressivity both
at the sieving and BKZ levels. This is even more constraining in combination with the dimension for free,
where, as far we can see, one would require both the sieving and the lift context to be aligned with the module
structure: d = gcd(b, d4f, 256). It is also not clear whether, for the same block-size, module-BKZ would give
a basis perfectly as good as a BKZ, given that the basis is now constrained by the module structure. One
will also need to adjust Kannan embedding to the module structure, which increases the overall dimension
of the lattice by d rather than by 1.
Expected influence on gate-count estimate: A factor between 2−4 and at most 20.

Summary. Combining all the discussion above, it appears that further refinements of the analysis of various
aspect of sieving, as well as some foreseeable algorithmic improvements, the estimates may move by a factor

11https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/JXN9NWGt9Ys/m/37tgAlU7DAAJ

30

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/JXN9NWGt9Ys/m/37tgAlU7DAAJ

somewhere between 2−16 and 214. Again, we hope that at least some of these research directions will soon be
documented and elucidated, narrowing down this confidence interval. We recall that they essentially affect
all lattice-based candidates in similar way (except maybe Q8).

5.3.1 Algebraic attacks.

While the best known attacks against the MLWE instance underlying Kyber do not make use of the
structure in the lattice, we still discuss the current state of the art of such attacks. Most noticeably, several
recent works propose new quantum algorithms against Ideal-SVP [43, 30, 21, 34, 35], i.e., solving the shortest
vector problem in ideal lattices. The work of [35] mentions obstacles towards a quantum attack on Ring-LWE
from their new techniques, but nevertheless suggests using Module-LWE, as it plausibly creates even more
obstacles. In [1], Albrecht and Deo establish a reduction from MLWE to RLWE, whose implication is that
a polynomial-time algorithm against RLWE with certain parameters would translate to a polynomial-time
algorithm against MLWE. In practical terms, however, this attack has a significant slow-down (and this is
not just due to the proof) as the dimension of the module increases. This does suggest that increasing the
dimension of the module may make the scheme more secure in concrete terms. In particular, going through
this reduction to attack Kyber768 would lead to an RLWE problem with quite large modulus and error
(q′ = q3, ς ′ > q2ς), and therefore require the attacker to consider more than 1 sample: the underlying lattice
remains a module with a rank strictly larger than 2.

5.4 Attacks against symmetric primitives
All symmetric building blocks of Kyber are instantiated with functions derived from Keccak [20]. In the
deterministic expansion of A from ρ we essentially need SHAKE-128 to produce output that “looks uniformly
random” and does not create any backdoors in the underlying lattice problem. In the noise generation we
require that concatenating a secret and a public input and feeding this concatenation to SHAKE-256 as
input results in a secure pseudorandom function. Breaking any of these properties of SHAKE would be a
major breakthrough in the cryptanalysis of SHAKE, which would require replacing SHAKE inside Kyber
by another XOF.

The security proofs model SHAKE-128, SHA3-256, and SHA3-512 as random oracles, i.e., they are subject
to the standard limitations of proofs in the (quantum-)random-oracle model. Turning these limitations into
an attack exploiting the instantiation of XOF, H, or G with SHAKE and SHA3 would again constitute a
major breakthrough in the understanding of either Keccak or random-oracle proofs in general.

5.5 Attacks exploiting decryption failures
In Theorems 2 and 3 we see that decryption failure probability plays a role in the attacker’s advantage: in
the classical context in the term 4qROδ and in the quantum context in the term 8q2ROδ, where qRO is the
number of queries to the (classical or quantum) random oracle.

Attacks exploiting failures. This term in the attacker’s advantage is not merely a proof artifact, it can
be explained by the following attack: An attacker searches through many different values of m (see line 1 of
Alg. 8) until he finds one that produces random coins r (line 3 of Alg. 8) that lead to a decapsulation failure,
which will give the attacker information about the secret key. In the quantum setting the search through
different values of m is accelerated by Grover’s algorithm, which explains the square in the term q2RO . With
this attack in mind note that with 264 ciphertexts (cmp. Section 4.A.2 of the Call for Proposals), there is a
chance of 2−100 of a decapsulation failure in Kyber768 without any particular effort by the attacker.

To understand what exactly this means for attacks against Kyber, we need to address the following two
questions:

1. How hard is it for an attacker to trigger a Kyber decapsulation failure?

2. How hard is it for an attacker equipped with a ciphertext triggering a failure to mount a successful
attack against Kyber?

31

Regarding the first question, the naive approach of an attacker is to try random ciphertexts, which has
a success probability of qdδ, where qd is the number of decapsulation queries. In the classical random-
oracle model, the cost of an attack exploiting failures will also never get lower than that, as it matches the
information-theoretic success probability.

Failure boosting using Grover.
A quantum attacker can try to use Grover search to precompute values of m that have a slightly higher

chance to produce a failure. The efficacy of Grover search is limited by the fact that an attacker cannot
determine offline whether a given value of m, or more specifically, the derived values r (line 9 of Alg. 5) and
e1 (line 13 of Alg. 5), produce a decapsulation failure. The reason is that the probability of decapsulation
failures largely depends on the products sTe1 and eT r and the attacker does not know (the signs of) the
coefficients of s and e.

Original Kyber analysis. The original Kyber submission document gave an analysis of a particular
strategy for using Grover’s algorithm to search for values of m that produce e1 and r with above-average
norm. Intuitively, the larger these values are, the bigger the probability of a decryption failure. The
gain achieved through such an approach is, however, limited due to the fact that the distribution of a
high-dimensional Gaussian is tightly concentrated around its expected value, while that of a 1-dimensional
Gaussian is not as tightly concentrated around its mean. We present this original analysis below, focusing
on Kyber768, which has failure probability of 2−164, for concreteness:

The polynomial pair (e1, r) can be seen as a vector in Z1536 distributed as a discrete Gaussian with
standard deviation σ =

√
η1/2 = 1 (because η1 = η2). By standard tail bounds on discrete Gaussians [14],

we know that an m-dimensional vector v drawn from a discrete Gaussian of standard deviation σ will satisfy

Pr[‖v‖ > κσ
√
m] < κm · em2 (1−κ2), (11)

for any κ > 1.
So for example, the probability of finding a vector which is of length 1.33 · σ

√
1536 is already as small as

2−220. Even if Grover’s algorithm reduces the search space and increases the probability to 2−110, finding
such a vector merely increases the chances of getting a decryption error; and the probability increase is
governed by the tail-bounds for 1-dimensional Gaussians12. For any vector v, if z is chosen according to a
Gaussian with standard deviation σ, then for any κ,

Pr[〈z,v〉| > κσ‖v‖] ≤ 2e−κ
2/2. (12)

If originally, the above probability is set so that decryption errors occur with probability ≈ 2−160, then
κ ≈ 15.13 If the adversary is then able to increase ‖v‖ by a factor of 1.33 (by being able to find larger
(e1, r)), then we can decrease κ by a factor of 1.33 to ≈ 11.25 in (12), which would still give us a probability
of a decryption error of less than 2−90. However, finding such a large v would take at least 2110 time, which
would make the whole attack cost at least 2200.

Of course one can try to find a slightly smaller v in the first step so that the entire attack takes less time.
If Grover’s algorithm really saves a square-root factor, then the optimal value is ≈ 1.05 for κ in (11), which
would allow us to lower κ by a factor of 1.05 in (12) to 15/1.05 ≈ 14.28, and would still give a total time to
find one decryption error ≈ 2−150. This makes the attack completely impractical.

Different approaches since 2017. Since the original analysis of failure boosting against Kyber, multiple
works have considered multiple aspects of this topic [37, 41]. The latest work on this topic is [22], considers
using Grover’s algorithm to produce a strategic set of decryption query points which results in a higher
chance of triggering a decryption failure when the number of decryption queries is limited, as in the NIST
Call for Proposals. The overall running time is, however, not less than in the above attack, which didn’t
restrict itself with a limit on the number of decapsulation queries.

12The decryption noise is generated as an inner product of two vectors, and the distribution of this inner product closely
resembles the Gaussian distribution.

13The above formula only roughly approximates how the decryption error is calculated where z corresponds to the secret key
(s, e). We should also point out that a part of the decryption error in Kyber is caused by the rounding function Compress,
which the adversary has no control over. Therefore this attack will be even less practical than what we describe.

32

From one to multiple failures. The original Kyber submission document also discussed that an attacker
may need more than a single failure to mount a key-recovery attack. For example, the work of [45] required
up to 4000 failures, which may suggest that the number of online queries required for a successful attack
against Kyber increases by a factor of ≈ 212. However, recent work [42] proposed an adaptive strategy,
which uses previous failures to significantly lower the cost of the next one. This directional failure boosting
technique reduces the cost of the full attack to barely more than the cost of triggering the first failure. This
means that the answer to the second question in the beginning of this subsection is that one should be on
the safe side and make sure that it’s hard to trigger even one failure.

Multitarget attacks using failures. Despite the limited gain, an attacker could consider using Grover’s
algorithm to precompute values of m that produce r and e1 with large norm and then use this precomputed
set of values of m against many users. This multi-target attack is prevented by hashing the public key pk
into the random coins r and thereby into r and e1 (line 3 of Alg. 8).

6 Advantages and limitations

6.1 Advantages
In addition to the very competitive speeds, small parameters, and being based on a well-studied problem,
the unique advantages of Kyber are:

Ease of implementation: Optimized implementations only have to focus on a fast dimension-256 NTT
and a fast Keccak permutation. This will give very competitive performance for all parameter sets of
Kyber.

Scalability: Switching from one Kyber parameter set to another only requires changing the matrix
dimension (i.e., a #define in most C implementations), the noise sampling, and the rounding of the
ciphertext via different parameters to the Compressq function.

We will now give a brief comparison of Kyber to other types of post-quantum schemes (that we are
aware of) and, more importantly, to other manners in which lattice-based schemes could be instantiated.

6.2 Comparison to SIDH
An interesting alternative to lattice-based KEMs is supersingular-isogeny Diffie-Hellman (SIDH) [56]. The
obvious advantage of SIDH is the sizes of public keys and ciphertexts that—with suitable compression [33]—
are about a factor of 3 smaller than Kyber’s public keys and ciphertexts. The downside of SIDH is that it
is more than 2 orders of magnitude slower than Kyber. The scheme is also rather new, which makes it hard
to make definitive comparisons. In the coming years, both implementation speeds and (quantum) attacks
against SIDH can improve which may result in faster schemes and/or larger parameters.

6.3 Comparison to code-based KEMs
When considering code-based KEMs, one needs to distinguish the “classical” McEliece and Niederreiter
schemes based on binary Goppa codes, and schemes with a less conservative (but more efficient) choice
of code. A KEM based on binary Goppa codes can reasonably claim to be a very conservative choice of
post-quantum primitive; however, its deployment will, in many scenarios, be hampered by massive public-
key size and key-generation time. Less conservative choices, like quasi-cyclic medium-density parity-check
(QC-MDPC) codes, are a closer competition in terms of performance but suffer from the fact that for
efficient parameters at high security levels they do not achieve (provably) negligible failure probability,
which precludes their use in CCA-secure KEMs.

6.4 Comparison to other lattice-based schemes
There are certain design choices that one can make when designing lattice-based schemes, some of which can
have significant effects on the efficiency of the resulting scheme and on the underlying security assumption.

33

Below we list the most important ones and explain the advantages / disadvantages of them versus what we
chose for Kyber.

6.4.1 Schemes that build a KEM directly

The Kyber KEM is constructed by encrypting a random message using the LPR encryption [71] (with
“bit-dropping”). Another approach one could take is directly building a KEM using the slightly different
ideas described in [39, 85]. The advantage of the constructions in [39, 85] over our approach is that if one
were to construct a CPA-secure KEM transmitting a b-bit key, then the ciphertext would be b bits shorter,
which is about a 3% saving for typical parameters [68]. If, however, one wishes to construct a CCA-secure
KEM like Kyber, then this advantage disappears since transformations from CPA-secure KEMs to CCA-
secure ones implicitly go through a CPA-secure encryption scheme, which will result in adding b bits to the
KEM. This is why, in Kyber, we simply use the LPR encryption scheme (instead of the CPA-secure key
encapsulation) to define Kyber.CPAPKE, and then use this as a building block to construct the IND-CCA2-
secure KEM Kyber.CCAKEM. Since there is virtually no difference between the two approaches, we will not
draw a distinction between schemes constructed in either manner throughout the rest of this section.

6.4.2 LWE based schemes

If one does not want to use any algebraic structure in the LWE problem (i.e. if one takes the MLWE problem
over the ring Z), then there are two possibilities for constructing encryption or key-exchange schemes. The
first approach makes the public key and the secret key very large (on the order of Megabytes), while keeping
the ciphertext at essentially the same size as in Kyber. This type of scheme is the [87] version of the original
Regev scheme from [93]. Because of the very large public-key size, this scheme would be extremely inefficient
as a key exchange. A scheme more amenable to key exchange is [23], whose public key and ciphertext sizes
are both approximately 11KB each, which is approximately 10 times larger than in Kyber. The running
time of each party is also larger by a factor of at least 10. In short, LWE-based schemes do not have any ring
structure but are an order of magnitude slower and larger than Kyber. They are good back-up schemes in
case algebraic structure in lattice schemes could somehow be devastatingly exploited by attackers.

6.4.3 Ring-LWE based schemes

The other extreme in the LWE design space are Ring-LWE (RLWE) schemes based on [71] (e.g., [10]).
RLWE is a special case of the MLWE problem where the width of the matrix A over the ring R is always 1
(and typically, its height would be 2 for a PKE or KEM scheme). Varying the hardness of an RLWE scheme
therefore requires to change the dimension of the ring, whereas in Kyber, the ring is always the same and
the dimension of the module is being varied. As we mentioned above, one advantage of the approach we
chose for Kyber is that we only need to have one good implementation for operations over the ring; varying
the dimension of the module simply involves doing more (or fewer) of the same ring operations. Changing
the ring, on the other hand, would require completely re-implementing all the operations.

Another advantage of working with a constant-degree “small” ring is that it enables more fine-grained
tradeoffs between performance and security. The simplest and most efficient way of implementing RLWE is
to work over rings Z[X]/(Xn + 1) where n is a power of 2. Since n is the only parameter that determines
the efficiency and security of RLWE schemes, limiting it to powers of 2 may require overshooting the needed
security bound. For example, the dimension of Kyber768 is not reachable. One could of course work directly
modulo a polynomial of any desired degree (with the main restriction being that it has to be irreducible
over Z), but then the security would decrease slightly due the geometry of non-power-of-2 number fields
(see [74, 75]).

The one advantage of RLWE over Kyber is that if A is a k × k matrix, then extracting it from a seed
requires k times more XOF output than for a 1× 1 matrix.

6.4.4 NTRU

When compared to Kyber, NTRU [53] has all the advantages and disadvantages of RLWE, but in addition
has two further negative points against it. First NTRU key generation is considerably more expensive

34

than in RLWE when the ring does not support NTT. The reason is that NTRU key generation requires
polynomial division, whereas RLWE key generation requires only multiplication (if the ring supports NTT,
then division is not much slower than multiplication). The second possible downside of NTRU is that the
geometry of its underlying lattice leads to attacks that do not exist against RLWE or MLWE schemes [60].
While this property does not seem to aid in attacks against the small parameters that are used for defining
NTRU cryptosystems, it may point to a possible weakness that could be further exploited. The one possible
advantage of using NTRU is a small performance advantage during encryption (encapsulation), but given the
disadvantages we do not consider this a good tradeoff. Furthermore, it is not possible to define an efficient
version of “Module-NTRU” that would allow for the advantages of Kyber described above in Section 6.1.

6.4.5 Different Polynomial Rings

One could consider using Kyber with a ring that is not Z[X]/(Xn + 1). An argument that could be made
for using different rings is that the rings currently used in Kyber have algebraic properties (e.g., subrings,
large Galois groups, etc.) which may be exploited in attacks. We choose to work with Z[X]/(Xn + 1) for
the following reasons:

• From a performance perspective, there is no serious competition; the NTT-based multiplication sup-
ported by the parameters we chose for Kyber is at the same time very memory efficient and faster
than any other algorithm for multiplication in polynomial rings.

• Lattice-based schemes using the ring Z[X]/(Xn + 1) have been studied since at least [69]. When the
noise vectors are chosen as specified in [71], there have been no improved attacks against RLWE (or
MLWE) that use the underlying algebraic structure [86]. Furthermore, being based on MLWE, the
algebraic structure of Kyber is very different from that which was exploited in the attacks against
ideal lattices in [21, 34, 35]14 – we emphasize that the lattice problems underlying the hardness of
Kyber are not ideal lattices.

• Some of the additional algebraic structure of Z[X]/(Xn+ 1) is actually helpful against certain possible
attack vectors. As a simple example, it can be proven that when Xn + 1 (almost) fully splits modulo
q, there do not exist polynomials in the ring that have small norm and many zeros in the NTT
representation—the existence of such polynomials for any q would weaken the security of MLWE.
Along the same lines, it can also be shown that Xn + 1 does not have any factors (modulo q) of
small degree and small norm. For example, all (of which there are exponentially-many in n) factors
of degree n/2 have `2-norm at least √q. This prevents attacks that map the MLWE instance to a
lower-dimensional sub-ring without increasing the errors by too much.

• Finally, Z[X]/(Xn+ 1) is one of the most widely studied, and best understood, rings (along with other
cyclotomic rings) in algebraic number theory. The fact that no attacks have been found against its use
for cryptosystems like Kyber makes it a much more conservative choice than some ring that is harder
to analyze and may show weaknesses only after many more years of study.

6.4.6 Deterministic Noise.

Instead of adding noise e, e1, and e2, one can add “deterministic” noise by simply dropping bits. This is the
basis behind the “Learning with Rounding” (LWR) problem [15], which for certain parameters is as hard as
the LWE problem. We believe that asymptotically this is a sound approach, but the number of bits that
can be dropped before significant decryption error is introduced is not very large (≈ 2 or 3). Relying on just
this assumption adds algebraic structure and may allow for a possibility of slightly improved attacks against
the scheme. For this reason, and the fact that generating noise is not a particularly costly operation, we did
not choose to potentially weaken the scheme to save a little time or have slightly shorter outputs.

14Also, like the attacks against NTRU, these do not apply for the small parameters used public key encryption schemes.

35

7 Brief discussion of relevant results since Nov. 2017
In this section we briefly reference and comment on results relevant to Kyber that were published after the
original NIST PQC submission deadline in November 2017.

“small Kyber”. The idea of decreasing the modulus q from q = 7681 to q = 3329 for Kyber was already
present in [99]; the paper refers to the resulting parameter set as “small-Kyber”. Other parameters chosen
in small-Kyber are different than what we describe in this round-2 update; in particular, small-Kyber does
not eliminate the public-key compression. More importantly, the polynomial multiplication using the NTT
algorithm is different in small-Kyber. Our multiplication algorithm uses the NTT algorithm to compute
the decomposition of polynomials ai ∈ Zq[X]/(X256 + 1) as

(ai mod X2 − r1, . . . , ai mod X2 − r128),

and multiplication is performed using pointwise products modulo X2−rj . The algorithm in [99], on the other
hand, divides the ai into two polynomials of degree 128 and performs a “full-splitting” NTT (i.e. modulo
X − r′i) on each of them. This method, which computes two (smaller) NTTs and some additional steps to
reassemble the polynomials, has slightly worse performance than the original Kyber and considerably worse
than Kyber with our round-2 tweaks; though we believe that applying our new tweaks would speed up the
algorithm in [99] as well.

Fault attacks. In [92], Ravi, Roy, Bhasin, Chattopadhyay, and Mukhopadhyay describe a fault attack
against implementations of NewHope, Kyber, Frodo, and Dilithium on an ARM Cortex-M4. Specifically,
these attacks target the instructions loading the nonce in the PRF; skipping this load through a clock glitch
reuses the same nonce multiple times, which leads to efficiently breakable instances of the schemes. We
could have decided to modify the specification of Kyber to generate randomness in a different way. Indeed,
generating all randomness at once through one call to the PRF would thwart this specific attack and maybe
aid future fault-attack protected implementations. However, such a change to the specification would reduce
parallelism and thus cost performance on many platforms. More importantly however, the benefits of such
a change are still completely unclear. It is not at all surprising that an implementation without any fault-
attack countermeasures, such as the one targeted in [92], succumbs to some fault attack. It is not clear
if the attack described in [92] is the most powerful attack and it is also unclear what serious fault-attack
countermeasures for any of the targeted schemes have to look like to thwart any realistic attack.

Improvements to sieving. Various papers have improved our understanding of attacks against lattice-
based cryptosystems and in particular the performance of sieving algorithms. Instead of listing those papers
here, we updated the discussion in Sections 5.1 and 5.2.

Attacks exploiting decapsulation failures. Since the beginning of the NIST PQC project, several papers
investigate chosen-ciphertext attacks exploiting decapsulation failures. Instead of listing those papers here,
we updated the discussion in Section 5.5.

References
[1] Martin Albrecht and Amit Deo. Large modulus Ring-LWE ≥ Module-LWE, 2017. To appear. https:

//eprint.iacr.org/2017/612. 31

[2] Martin R Albrecht, Benjamin R Curtis, Amit Deo, Alex Davidson, Rachel Player, Eamonn W Postleth-
waite, Fernando Virdia, and Thomas Wunderer. Estimate all the {LWE, NTRU} schemes! In Interna-
tional Conference on Security and Cryptography for Networks, pages 351–367. Springer, 2018. 28

[3] Martin R. Albrecht, Amit Deo, and Kenneth G. Paterson. Cold boot attacks on ring and module LWE
keys under the NTT. Transactions on Cryptographic Hardware and Embedded Systems, 2018(3):173–213,
2018. https://doi.org/10.13154/tches.v2018.i3.173-213. 16

[4] Martin R Albrecht, Léo Ducas, Gottfried Herold, Elena Kirshanova, Eamonn W Postlethwaite, and
Marc Stevens. The general sieve kernel and new records in lattice reduction. In Annual International

36

https://eprint.iacr.org/2017/612
https://eprint.iacr.org/2017/612

Conference on the Theory and Applications of Cryptographic Techniques, pages 717–746. Springer, 2019.
25, 27, 28, 29, 30

[5] Martin R Albrecht, Vlad Gheorghiu, Eamonn W Postlethwaite, and John M Schanck. Estimating
quantum speedups for lattice sieves. Technical report, Cryptology ePrint Archive, Report 2019/1161,
2019. 21, 23, 26, 28, 29, 30

[6] Martin R Albrecht, Florian Göpfert, Fernando Virdia, and Thomas Wunderer. Revisiting the expected
cost of solving uSVP and applications to LWE. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances
in Cryptology – ASIACRYPT 2017, volume 10211 of LNCS, pages 65–102. Springer, 2017. https:
//eprint.iacr.org/2017/815. 26, 27, 28

[7] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learning with errors.
J. Mathematical Cryptology, 9(3):169–203, 2015. https://eprint.iacr.org/2015/046. 25, 26, 27

[8] Michael Alekhnovich. More on average case vs approximation complexity. In 44th Symposium on Foun-
dations of Computer Science (FOCS 2003), 11-14 October 2003, Cambridge, MA, USA, Proceedings,
pages 298–307, 2003. 8

[9] Erdem Alkim, Yusuf Alper Bilgin, Murat Cenk, and François Gérard. Cortex-M4 optimizations
for {R,M}LWE schemes. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2020(3):336–357, 2020. https://tches.iacr.org/index.php/TCHES/article/view/8593. 18

[10] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-quantum key exchange
– a new hope. In Proceedings of the 25th USENIX Security Symposium, pages 327–343. USENIX
Association, 2016. http://cryptojedi.org/papers/#newhope. 8, 12, 13, 15, 24, 25, 26, 27, 28, 34

[11] Yoshinori Aono, Yuntao Wang, Takuya Hayashi, and Tsuyoshi Takagi. Improved progressive BKZ
algorithms and their precise cost estimation by sharp simulator. In Marc Fischlin and Jean-Sébastien
Coron, editors, Advances in Cryptology – EUROCRYPT 2016, volume 9665 of LNCS, pages 789–819.
Springer, 2016. https://eprint.iacr.org/2016/146. 25, 28

[12] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic primitives and
circular-secure encryption based on hard learning problems. In Advances in Cryptology - CRYPTO
2009, 29th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2009.
Proceedings, pages 595–618, 2009. 8

[13] Sanjeev Arora and Rong Ge. New algorithms for learning in presence of errors. In Luca Aceto, Monika
Henzingeri, and Jiří Sgall, editors, Automata, Languages and Programming, volume 6755 of LNCS,
pages 403–415. Springer, 2011. https://www.cs.duke.edu/~rongge/LPSN.pdf. 25

[14] Wojciech Banaszczyk. New bounds in some transference theorems in the geometry of numbers. Math-
ematische Annalen, 296(1):625–635, 1993. 32

[15] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and lattices. In David
Pointcheval and Thomas Johansson, editors, Advances in Cryptology – EUROCRYPT 2012, volume 7237
of LNCS, pages 719–737. Springer, 2012. http://www.iacr.org/archive/eurocrypt2012/72370713/
72370713.pdf. 8, 35

[16] Paul Barrett. Implementing the Rivest Shamir and Adleman public key encryption algorithm on a
standard digital signal processor. In Andrew M. Odlyzko, editor, Advances in Cryptology – CRYPTO
’86, volume 263 of Lecture Notes in Computer Science, pages 311–323. Springer-Verlag Berlin Heidelberg,
1987. https://link.springer.com/chapter/10.1007/3-540-47721-7_24. 23

[17] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in nearest neighbor
searching with applications to lattice sieving. In SODA ’16 Proceedings of the twenty-seventh annual
ACM-SIAM symposium on Discrete Algorithms, pages 10–24. SIAM, 2016. https://eprint.iacr.
org/2015/1128. 26, 27, 29

37

https://eprint.iacr.org/2017/815
https://eprint.iacr.org/2017/815
https://eprint.iacr.org/2015/046
https://tches.iacr.org/index.php/TCHES/article/view/8593
http://cryptojedi.org/papers/#newhope
https://eprint.iacr.org/2016/146
https://www.cs.duke.edu/~rongge/LPSN.pdf
http://www.iacr.org/archive/eurocrypt2012/72370713/72370713.pdf
http://www.iacr.org/archive/eurocrypt2012/72370713/72370713.pdf
https://link.springer.com/chapter/10.1007/3-540-47721-7_24
https://eprint.iacr.org/2015/1128
https://eprint.iacr.org/2015/1128

[18] Daniel J. Bernstein, Tanja Lange, and Peter Schwabe. The security impact of a new cryptographic
library. In Alejandro Hevia and Gregory Neven, editors, Progress in Cryptology – LATINCRYPT 2012,
volume 7533 of LNCS, pages 159–176. Springer, 2012. http://cryptojedi.org/papers/#coolnacl.
14

[19] Daniel J. Bernstein, Peter Schwabe, and Gilles Van Assche. Tweetable FIPS 202, 2015. https://
keccak.team/2015/tweetfips202.html (accessed 2017-11-29). 14

[20] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. The Keccak reference. Submission
to the NIST SHA-3 competition, 2011. https://keccak.team/files/Keccak-reference-3.0.pdf. 14,
31

[21] Jean-François Biasse and Fang Song. Efficient quantum algorithms for computing class groups and
solving the principal ideal problem in arbitrary degree number fields. In SODA ’16 Proceedings of the
twenty-seventh annual ACM-SIAM symposium on Discrete Algorithms, pages 893–902. SIAM, 2016.
http://fangsong.info/files/pubs/BS_SODA16.pdf. 31, 35

[22] Nina Bindel and John M. Schanck. Decryption failure is more likely after success. In Jintai Ding
and Jean-Pierre Tillich, editors, Post-Quantum Cryptography, volume 12100 of LNCS, pages 206–225.
Springer, 2020. https://eprint.iacr.org/2019/1392.pdf. 32

[23] Joppe Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria Nikolaenko, Ananth
Raghunathan, and Douglas Stebila. Frodo: Take off the ring! practical, quantum-secure key exchange
from LWE. In CCS ’16 Proceedings of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security, pages 1006–1018. ACM, 2016. https://eprint.iacr.org/2016/659. 12, 34

[24] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M. Schanck, Peter
Schwabe, and Damien Stehlé. CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM. In
2018 IEEE European Symposium on Security and Privacy, EuroS&P 2018. IEEE, 2018. To appear.
https://eprint.iacr.org/2017/634. 4, 11, 24

[25] Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. Post-quantum key exchange for
the TLS protocol from the ring learning with errors problem. In 2015 IEEE Symposium on Security
and Privacy, pages 553–570, 2015. https://eprint.iacr.org/2014/599. 12, 13

[26] Leon Botros, Matthias Kannwischer, and Peter Schwabe. Memory-efficient high-speed implementation
of Kyber on Cortex-M4, 2019. http://cryptojedi.org/papers/#nttm4. 18

[27] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomorphic encryption
without bootstrapping. In ITCS ’12 Proceedings of the 3rd Innovations in Theoretical Computer Science
Conference, pages 309–325. ACM, 2012. https://eprint.iacr.org/2011/277. 19

[28] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Classical hardness
of learning with errors. In STOC ’13 Proceedings of the forty-fifth annual ACM symposium on Theory
of computing, pages 575–584. ACM, 2013. http://arxiv.org/pdf/1306.0281. 13

[29] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom. Flush, Gauss, and Reload –
a cache attack on the BLISS lattice-based signature scheme. In Benedikt Gierlichs and Axel Poschmann,
editors, Cryptographic Hardware and Embedded Systems – CHES 2016, volume 9813 of LNCS, pages
323–345. Springer, 2016. https://eprint.iacr.org/2016/300. 13

[30] Peter Campbell, Michael Groves, and Dan Shepherd. Soliloquy: A cautionary tale. In ETSI
2nd Quantum-Safe Crypto Workshop, pages 1–9, 2014. https://docbox.etsi.org/workshop/2014/
201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf. 31

[31] Yuanmi Chen. Lattice reduction and concrete security of fully homomorphic encryption. PhD thesis,
l’Université Paris Diderot, 2013. http://www.di.ens.fr/~ychen/research/these.pdf. 25, 26

38

http://cryptojedi.org/papers/#coolnacl
https://keccak.team/2015/tweetfips202.html
https://keccak.team/2015/tweetfips202.html
https://keccak.team/files/Keccak-reference-3.0.pdf
http://fangsong.info/files/pubs/BS_SODA16.pdf
https://eprint.iacr.org/2019/1392.pdf
https://eprint.iacr.org/2016/659
https://eprint.iacr.org/2017/634
https://eprint.iacr.org/2014/599
http://cryptojedi.org/papers/#nttm4
https://eprint.iacr.org/2011/277
http://arxiv.org/pdf/1306.0281
https://eprint.iacr.org/2016/300
https://docbox.etsi.org/workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf
https://docbox.etsi.org/workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf
http://www.di.ens.fr/~ychen/research/these.pdf

[32] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates. In Dong Hoon Lee
and Xiaoyun Wang, editors, Advances in Cryptology – ASIACRYPT 2011, volume 7073 of LNCS, pages
1–20. Springer, 2011. http://www.iacr.org/archive/asiacrypt2011/70730001/70730001.pdf. 25,
27

[33] Craig Costello, David Jao, Patrick Longa, Michael Naehrig, Joost Renes, and David Urbanik. Efficient
compression of SIDH public keys. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances
in Cryptology – EUROCRYPT 2017, volume 10210 of LNCS, pages 679–706. Springer, 2017. https:
//eprint.iacr.org/2016/963. 33

[34] Ronald Cramer, Léo Ducas, Chris Peikert, and Oded Regev. Recovering short generators of principal
ideals in cyclotomic rings. In Marc Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology
– EUROCRYPT 2016, volume 9666 of LNCS, pages 559–585. Springer, 2016. https://eprint.iacr.
org/2015/313. 31, 35

[35] Ronald Cramer, Léo Ducas, and Benjamin Wesolowski. Short Stickelberger class relations and ap-
plication to Ideal-SVP. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances in
Cryptology – EUROCRYPT 2017, volume 10210 of LNCS, pages 324–348. Springer, 2017. https:
//eprint.iacr.org/2016/885. 31, 35

[36] Dana Dachman-Soled, Léo Ducas, Huijing Gong, and Mélissa Rossi. Lwe with side information: Attacks
and concrete security estimation. In Daniele Micciancio and Thomas Ristenpart, editors, Advances in
Cryptology – CRYPTO 2020, volume 12171 of LNCS, pages 329–358. Springer, 2020. https://eprint.
iacr.org/2020/292.pdf. 21, 27, 28, 30

[37] Jan-Pieter D’Anvers, Frederik Vercauteren, and Ingrid Verbauwhede. On the impact of decryption
failures on the security of LWE/LWR based schemes. IACR Cryptol. ePrint Arch., 2018:1089, 2018. 32

[38] The FPLLL development team. fplll, a lattice reduction library. Available at https://github.com/
fplll/fplll, 2017. 25

[39] Jintai Ding, Xiang Xie, and Xiaodong Lin. A simple provably secure key exchange scheme based on
the learning with errors problem. IACR Cryptology ePrint Archive report 2012/688, 2012. https:
//eprint.iacr.org/2012/688. 34

[40] Léo Ducas. Shortest vector from lattice sieving: a few dimensions for free. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages 125–145. Springer, 2018.
21, 25, 26, 27, 28, 29

[41] Jan-Pieter D’Anvers, Qian Guo, Thomas Johansson, Alexander Nilsson, Frederik Vercauteren, and
Ingrid Verbauwhede. Decryption failure attacks on ind-cca secure lattice-based schemes. In IACR
International Workshop on Public Key Cryptography, pages 565–598. Springer, 2019. 32

[42] Jan-Pieter D’Anvers, Mélissa Rossi, and Fernando Virdia. (one) failure is not an option: Bootstrapping
the search for failures in lattice-based encryption schemes. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 3–33. Springer, 2020. 33

[43] Kirsten Eisenträger, Sean Hallgren, Alexei Kitaev, and Fang Song. A quantum algorithm for computing
the unit group of an arbitrary degree number field. In STOC ’14 Proceedings of the forty-sixth annual
ACM symposium on Theory of computing, pages 293–302. ACM, 2014. http://www.personal.psu.
edu/kxe8/unitgroup.pdf. 31

[44] Thomas Espitau, Pierre-Alain Fouque, Benoït Gérard, and Mehdi Tibouchi. Side-channel attacks on
BLISS lattice-based signatures: Exploiting branch tracing against strongswan and electromagnetic ema-
nations in microcontrollers. In CCS ’17 Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pages 1857–1874. ACM, 2017. https://eprint.iacr.org/2017/505.
13

39

http://www.iacr.org/archive/asiacrypt2011/70730001/70730001.pdf
https://eprint.iacr.org/2016/963
https://eprint.iacr.org/2016/963
https://eprint.iacr.org/2015/313
https://eprint.iacr.org/2015/313
https://eprint.iacr.org/2016/885
https://eprint.iacr.org/2016/885
https://eprint.iacr.org/2020/292.pdf
https://eprint.iacr.org/2020/292.pdf
https://github.com/fplll/fplll
https://github.com/fplll/fplll
https://eprint.iacr.org/2012/688
https://eprint.iacr.org/2012/688
http://www.personal.psu.edu/kxe8/unitgroup.pdf
http://www.personal.psu.edu/kxe8/unitgroup.pdf
https://eprint.iacr.org/2017/505

[45] Scott Fluhrer. Cryptanalysis of ring-LWE based key exchange with key share reuse. IACR Cryptology
ePrint Archive report 2016/085, 2016. https://eprint.iacr.org/2016/085. 33

[46] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric encryption
schemes. In Advances in Cryptology - CRYPTO ’99, pages 537–554, 1999. https://link.springer.
com/chapter/10.1007/3-540-48405-1_34. 4, 10, 20

[47] Nicolas Gama and Phong Nguyen. Predicting lattice reduction. In Nigel Smart, editor, Advances
in Cryptology – EUROCRYPT 2008, volume 4965 of LNCS, pages 31–51. Springer, 2008. https:
//www.iacr.org/archive/eurocrypt2008/49650031/49650031.pdf. 26

[48] Nicolas Gama, Phong Q Nguyen, and Oded Regev. Lattice enumeration using extreme pruning. In Henri
Gilbert, editor, Advances in Cryptology – EUROCRYPT 2010, volume 6110 of LNCS, pages 257–278.
Springer, 2010. http://www.iacr.org/archive/eurocrypt2010/66320257/66320257.pdf. 25

[49] Matthew Gretton-Dann. Introducing 2017’s extensions to the Arm architecture, 2017.
https://community.arm.com/processors/b/blog/posts/introducing-2017s-extensions-to-
the-arm-architecture. 15

[50] Tim Güneysu, Tobias Oder, Thomas Pöppelmann, and Peter Schwabe. Software speed records for
lattice-based signatures. In Philippe Gaborit, editor, Post-Quantum Cryptography, volume 7932 of
LNCS, pages 67–82. Springer, 2013. http://cryptojedi.org/papers/#lattisigns. 15

[51] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William Paul, Joseph A.
Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W. Felten. Lest we remember: Cold
boot attacks on encryption keys. In Proceedings of the 17th USENIX Security Symposium, pages 45–
60. USENIX Association, 2008. https://www.usenix.org/legacy/event/sec08/tech/full_papers/
halderman/halderman.pdf. 16

[52] Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Terminating BKZ. IACR Cryptology ePrint
Archive report 2011/198, 2011. https://eprint.iacr.org/2011/198. 25

[53] Jeffrey Hoffstein, Jull Pipher, and Joseph H. Silverman. NTRU: a ring-based public key cryptosystem.
In Joe P. Buhler, editor, Algorithmic number theory, volume 1423 of LNCS, pages 267–288. Springer,
1998. https://www.securityinnovation.com/uploads/Crypto/ANTS97.ps.gz. 8, 34

[54] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the Fujisaki-Okamoto
transformation. In Yael Kalai and Leonid Reyzin, editors, Theory of Cryptography, LNCS, pages 341–
371. Springer, 2017. https://eprint.iacr.org/2017/604. 14, 20

[55] Nick Howgrave-Graham. A hybrid lattice-reduction and meet-in-the-middle attack against NTRU. In
Alfred Menezes, editor, Advances in Cryptology – CRYPTO 2007, volume 4622 of LNCS, pages 150–169.
Springer, 2007. http://www.iacr.org/archive/crypto2007/46220150/46220150.pdf. 13

[56] David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from supersingular elliptic
curve isogenies. In Bo-Yin Yang, editor, Post-Quantum Cryptography – PQCrypto 2011, volume 7071
of LNCS, pages 19–34. Springer, 2011. https://eprint.iacr.org/2011/506. 33

[57] Matthias Kannwischer, Joost Rijneveld, Peter Schwabe, Douglas Stebila, and Thom Wiggers. Pqclean:
clean, portable, tested implementations of post-quantum cryptography. 16

[58] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen. pqm4: Testing and bench-
marking NIST PQC on ARM Cortex-M4. Workshop Record of the Second PQC Standardization Con-
ference, 2019. https://cryptojedi.org/papers/#pqm4. 2, 18

[59] Paul Kirchner and Pierre-Alain Fouque. An improved BKW algorithm for LWE with applications to
cryptography and lattices. In Rosario Gennaro and Matthew Robshaw, editors, Advances in Cryptology
– CRYPTO 2015, volume 9215 of LNCS, pages 43–62. Springer, 2015. http://www.iacr.org/archive/
crypto2015/92160264/92160264.pdf. 25

40

https://eprint.iacr.org/2016/085
https://link.springer.com/chapter/10.1007/3-540-48405-1_34
https://link.springer.com/chapter/10.1007/3-540-48405-1_34
https://www.iacr.org/archive/eurocrypt2008/49650031/49650031.pdf
https://www.iacr.org/archive/eurocrypt2008/49650031/49650031.pdf
http://www.iacr.org/archive/eurocrypt2010/66320257/66320257.pdf
https://community.arm.com/processors/b/blog/posts/introducing-2017s-extensions-to-the-arm-architecture
https://community.arm.com/processors/b/blog/posts/introducing-2017s-extensions-to-the-arm-architecture
http://cryptojedi.org/papers/#lattisigns
https://www.usenix.org/legacy/event/sec08/tech/full_papers/halderman/halderman.pdf
https://www.usenix.org/legacy/event/sec08/tech/full_papers/halderman/halderman.pdf
https://eprint.iacr.org/2011/198
https://www.securityinnovation.com/uploads/Crypto/ANTS97.ps.gz
https://eprint.iacr.org/2017/604
http://www.iacr.org/archive/crypto2007/46220150/46220150.pdf
https://eprint.iacr.org/2011/506
https://cryptojedi.org/papers/#pqm4
http://www.iacr.org/archive/crypto2015/92160264/92160264.pdf
http://www.iacr.org/archive/crypto2015/92160264/92160264.pdf

[60] Paul Kirchner and Pierre-Alain Fouque. Revisiting lattice attacks on overstretched NTRU parameters.
In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology – EUROCRYPT
2017, volume 10210 of LNCS, pages 3–26. Springer, 2017. https://www.di.ens.fr/~fouque/euro17a.
pdf. 35

[61] Thijs Laarhoven. Search problems in cryptography. PhD thesis, Eindhoven University of Technology,
2015. http://www.thijs.com/docs/phd-final.pdf. 26

[62] Thijs Laarhoven. Sieving for shortest vectors in lattices using angular locality-sensitive hashing. In
Rosiario Gennaro and Matthew Robshaw, editors, Advances in Cryptology – CRYPTO 2015, volume
9216 of LNCS, pages 3–22. Springer, 2015. http://www.iacr.org/archive/crypto2015/92160123/
92160123.pdf. 26

[63] Thijs Laarhoven and Artur Mariano. Progressive lattice sieving. In International Conference on Post-
Quantum Cryptography, pages 292–311. Springer, 2018. 28

[64] Thijs Laarhoven, Michele Mosca, and Joop van de Pol. Finding shortest lattice vectors faster using
quantum search. Designs, Codes and Cryptography, 77(2):375–400, 2015. https://eprint.iacr.org/
2014/907. 26

[65] Adam Langley. Maybe skip SHA-3. Blog post on ImperialViolet, 2017. https://www.imperialviolet.
org/2017/05/31/skipsha3.html. 15

[66] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for module lattices. Designs,
Codes and Cryptography, 75(3):565–599, 2015. https://eprint.iacr.org/2012/090. 4, 12, 19

[67] Mingjie Liu and Phong Q Nguyen. Solving bdd by enumeration: An update. In Cryptographers’ Track
at the RSA Conference, pages 293–309. Springer, 2013. 30

[68] Vadim Lyubashevsky. Standardizing lattice crypto and beyond. Slides of the talk given by Vadim
Lyubashevsky at PQCrypto 2017, 2017. https://2017.pqcrypto.org/conference/slides/pqc_
2017_lattice.pdf. 34

[69] Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and Alon Rosen. SWIFFT: A modest proposal
for FFT hashing. In Kaisa Nyberg, editor, Fast Software Encryption – FSE 2008,, volume 5086 of LNCS,
pages 54–72. Springer, 2008. https://www.eecs.harvard.edu/~alon/PAPERS/lattices/swifft.pdf.
12, 35

[70] Vadim Lyubashevsky, Adriana Palacio, and Gil Segev. Public-key cryptographic primitives provably as
secure as subset sum. In Theory of Cryptography, 7th Theory of Cryptography Conference, TCC 2010,
Zurich, Switzerland, February 9-11, 2010. Proceedings, pages 382–400, 2010. 8

[71] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over
rings. In Henri Gilbert, editor, Advances in Cryptology – EUROCRYPT 2010, volume 6110 of LNCS,
pages 1–23. Springer, 2010. http://www.iacr.org/archive/eurocrypt2010/66320288/66320288.
pdf. 7, 12, 34, 35

[72] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors
over rings. Slides of the talk given by Chris Peikert at Eurocrypt 2010, 2010. http://crypto.rd.
francetelecom.com/events/eurocrypt2010/talks/slides-ideal-lwe.pdf. 7

[73] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors
over rings. Journal of the ACM, 60(6):43:1–43:35, 2013. http://www.cims.nyu.edu/~regev/papers/
ideal-lwe.pdf. 7

[74] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for Ring-LWE cryptography. In Thomas
Johansson and Phong Q. Nguyen, editors, Advances in Cryptology – EUROCRYPT 2013, volume 7881
of LNCS, pages 35–54. Springer, 2013. http://www.iacr.org/archive/eurocrypt2013/78810035/
78810035.pdf. 34

41

https://www.di.ens.fr/~fouque/euro17a.pdf
https://www.di.ens.fr/~fouque/euro17a.pdf
http://www.thijs.com/docs/phd-final.pdf
http://www.iacr.org/archive/crypto2015/92160123/92160123.pdf
http://www.iacr.org/archive/crypto2015/92160123/92160123.pdf
https://eprint.iacr.org/2014/907
https://eprint.iacr.org/2014/907
https://www.imperialviolet.org/2017/05/31/skipsha3.html
https://www.imperialviolet.org/2017/05/31/skipsha3.html
https://eprint.iacr.org/2012/090
https://2017.pqcrypto.org/conference/slides/pqc_2017_lattice.pdf
https://2017.pqcrypto.org/conference/slides/pqc_2017_lattice.pdf
https://www.eecs.harvard.edu/~alon/PAPERS/lattices/swifft.pdf
http://www.iacr.org/archive/eurocrypt2010/66320288/66320288.pdf
http://www.iacr.org/archive/eurocrypt2010/66320288/66320288.pdf
http://crypto.rd.francetelecom.com/events/eurocrypt2010/talks/slides-ideal-lwe.pdf
http://crypto.rd.francetelecom.com/events/eurocrypt2010/talks/slides-ideal-lwe.pdf
http://www.cims.nyu.edu/~regev/papers/ideal-lwe.pdf
http://www.cims.nyu.edu/~regev/papers/ideal-lwe.pdf
http://www.iacr.org/archive/eurocrypt2013/78810035/78810035.pdf
http://www.iacr.org/archive/eurocrypt2013/78810035/78810035.pdf

[75] Vadim Lyubashevsky and Gregor Seiler. NTTRU: Truly fast NTRU using NTT. TCHES, 2019. https:
//eprint.iacr.org/2019/040. 34

[76] Artur Mariano, Thijs Laarhoven, and Christian Bischof. A parallel variant of LDSieve for the SVP on
lattices. In 2017 25th Euromicro International Conference on Parallel, Distributed and Network-based
Processing (PDP), pages 23–30. IEEE, 2017. 26, 27

[77] Daniele Micciancio and Panagiotis Voulgaris. Faster exponential time algorithms for the shortest vector
problem. In SODA ’10 Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete
Algorithms, pages 1468–1480. SIAM, 2010. https://cseweb.ucsd.edu/~daniele/papers/Sieve.pdf.
26

[78] Peter L. Montgomery. Modular multiplication without trial division. Mathematics of Computa-
tion, 44(170):519–521, 1985. http://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-
0777282-X/S0025-5718-1985-0777282-X.pdf. 23

[79] Tamalika Mukherjee and Noah Stephens-Davidowitz. Lattice reduction for modules, or how to reduce
modulesvp to modulesvp. In Annual International Cryptology Conference, pages 213–242. Springer,
2020. 30

[80] National Institute of Standards and Technology. FIPS PUB 202 – SHA-3 standard: Permutation-based
hash and extendable-output functions, 2015. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.
202.pdf. 11, 14

[81] Phong Q. Nguyen and Thomas Vidick. Sieve algorithms for the shortest vector problem are practical.
Journal of Mathematical Cryptology, 2(2):181–207, 2008. ftp://ftp.di.ens.fr/pub/users/pnguyen/
JoMC08.pdf. 26

[82] Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim Güneysu. Practical CCA2-secure and
masked Ring-LWE implementation. IACR Cryptology ePrint Archive report 2016/1109, 2016. https:
//eprint.iacr.org/2016/1109. 24

[83] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem, 2009. https:
//web.eecs.umich.edu/~cpeikert/pubs/svpcrypto.pdf (full version of [84]). 8, 12, 42

[84] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem: extended abstract.
In STOC ’09 Proceedings of the forty-first annual ACM symposium on Theory of computing, pages 333–
342. ACM, 2009. See also full version [83]. 42

[85] Chris Peikert. Lattice cryptography for the Internet. In Michele Mosca, editor, Post-Quantum Cryptog-
raphy, volume 8772 of LNCS, pages 197–219. Springer, 2014. http://web.eecs.umich.edu/~cpeikert/
pubs/suite.pdf. 34

[86] Chris Peikert. How (not) to instantiate Ring-LWE. In Vassilis Zikas and Roberto De Prisco, editors,
Security and Cryptography for Networks, volume 9841 of LNCS, pages 411–430. Springer, 2016. https:
//web.eecs.umich.edu/~cpeikert/pubs/instantiate-rlwe.pdf. 35

[87] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and composable
oblivious transfer. In David A. Wagner, editor, Advances in Cryptology – CRYPTO 2008, volume 5157
of LNCS, pages 554–571. Springer, 2008. https://www.iacr.org/archive/crypto2008/51570556/
51570556.pdf. 34

[88] Peter Pessl, Leon Groot Bruinderink, and Yuval Yarom. To BLISS-B or not to be – attack-
ing strongSwan’s implementation of post-quantum signatures. In CCS ’17 Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, pages 1843–1855. ACM, 2017.
https://eprint.iacr.org/2017/490. 13

42

https://eprint.iacr.org/2019/040
https://eprint.iacr.org/2019/040
https://cseweb.ucsd.edu/~daniele/papers/Sieve.pdf
http://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777282-X/S0025-5718-1985-0777282-X.pdf
http://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777282-X/S0025-5718-1985-0777282-X.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
ftp://ftp.di.ens.fr/pub/users/pnguyen/JoMC08.pdf
ftp://ftp.di.ens.fr/pub/users/pnguyen/JoMC08.pdf
https://eprint.iacr.org/2016/1109
https://eprint.iacr.org/2016/1109
https://web.eecs.umich.edu/~cpeikert/pubs/svpcrypto.pdf
https://web.eecs.umich.edu/~cpeikert/pubs/svpcrypto.pdf
http://web.eecs.umich.edu/~cpeikert/pubs/suite.pdf
http://web.eecs.umich.edu/~cpeikert/pubs/suite.pdf
https://web.eecs.umich.edu/~cpeikert/pubs/instantiate-rlwe.pdf
https://web.eecs.umich.edu/~cpeikert/pubs/instantiate-rlwe.pdf
https://www.iacr.org/archive/crypto2008/51570556/51570556.pdf
https://www.iacr.org/archive/crypto2008/51570556/51570556.pdf
https://eprint.iacr.org/2017/490

[89] Thomas Pöppelmann and Tim Güneysu. Towards practical lattice-based public-key encryption on
reconfigurable hardware. In Tanja Lange, Kristin Lauter, and Petr Lisoněk, editors, Selected Areas in
Cryptography – SAC 2013, volume 8282 of LNCS, pages 68–85. Springer, 2013. https://www.ei.rub.
de/media/sh/veroeffentlichungen/2013/08/14/lwe_encrypt.pdf. 8, 12

[90] Thomas Pornin. BearSSL – a smaller SSL/TLS library, 2018. https://bearssl.org/ (accessed 2019-
03-15). 23

[91] Robert Primas, Peter Pessl, and Stefan Mangard. Single-trace side-channel attacks on masked lattice-
based encryption. In Wieland Fischer and Naofumi Homma, editors, Cryptographic Hardware and
Embedded Systems – CHES 2017, volume 10529 of LNCS, pages 513–533. Springer, 2017. https:
//eprint.iacr.org/2017/594. 24

[92] Prasanna Ravi, Debapriya Basu Roy, Shivam Bhasin, Anupam Chattopadhyay, and Debdeep
Mukhopadhyay. Number “not used” once - practical fault attack on pqm4 implementations of nist candi-
dates. IACR Cryptology ePrint Archive report 2018/211, 2018. https://eprint.iacr.org/2018/211.
36

[93] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In STOC ’05
Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, pages 84–93. ACM,
2005. Preliminary version of [94]. 8, 13, 34

[94] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. Journal of the
ACM, 56(6):34, 2009. http://www.cims.nyu.edu/~regev/papers/qcrypto.pdf. 8, 43

[95] Sujoy Sinha Roy, Frederik Vercauteren, Nele Mentens, Donald Donglong Chen, and Ingrid Verbauwhede.
Compact Ring-LWE cryptoprocessor. In Lejla Batina and Matthew Robshaw, editors, Cryptographic
Hardware and Embedded Systems – CHES 2014, volume 8731 of LNCS, pages 371–391. Springer, 2014.
http://www.iacr.org/archive/ches2014/87310183/87310183.pdf. 12

[96] Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa. Tightly-secure key-encapsulation mechanism
in the quantum random oracle model. IACR Cryptology ePrint Archive report 2017/1005, 2017. https:
//eprint.iacr.org/2017/1005. 20

[97] Claus-Peter Schnorr and Martin Euchner. Lattice basis reduction: improved practi-
cal algorithms and solving subset sum problems. Mathematical programming, 66(1-3):181–
199, 1994. http://www.csie.nuk.edu.tw/~cychen/Lattices/Lattice%20Basis%20Reduction_
%20Improved%20Practical%20Algorithms%20and%20Solving%20Subset%20Sum%20Problems.pdf. 25

[98] Yang Yu and Léo Ducas. Second order statistical behavior of lll and bkz. In International Conference
on Selected Areas in Cryptography, pages 3–22. Springer, 2017. 28, 30

[99] Shuai Zhou, Haiyang Xue, Daode Zhang, Kunpeng Wang, Xianhui Lu, Bao Li, and Jingnan He.
Preprocess-then-ntt technique and its applications to KYBER and NEWHOPE. IACR Cryptology
ePrint Archive report 2018/995, 2018. https://eprint.iacr.org/2018/995. 36

43

https://www.ei.rub.de/media/sh/veroeffentlichungen/2013/08/14/lwe_encrypt.pdf
https://www.ei.rub.de/media/sh/veroeffentlichungen/2013/08/14/lwe_encrypt.pdf
https://bearssl.org/
https://eprint.iacr.org/2017/594
https://eprint.iacr.org/2017/594
https://eprint.iacr.org/2018/211
http://www.cims.nyu.edu/~regev/papers/qcrypto.pdf
http://www.iacr.org/archive/ches2014/87310183/87310183.pdf
https://eprint.iacr.org/2017/1005
https://eprint.iacr.org/2017/1005
http://www.csie.nuk.edu.tw/~cychen/Lattices/Lattice%20Basis%20Reduction_%20Improved%20Practical%20Algorithms%20and%20Solving%20Subset%20Sum%20Problems.pdf
http://www.csie.nuk.edu.tw/~cychen/Lattices/Lattice%20Basis%20Reduction_%20Improved%20Practical%20Algorithms%20and%20Solving%20Subset%20Sum%20Problems.pdf
https://eprint.iacr.org/2018/995

	Written specification
	Preliminaries and notation.
	Specification of Kyber.CPAPKE
	Specification of Kyber.CCAKEM
	Kyber parameter sets
	Design rationale

	Performance analysis
	Implementation considerations and tradeoffs
	Performance of Kyber on Intel Haswell CPUs
	Performance of Kyber on ARM Cortex-M4 CPUs

	Known Answer Test values
	Expected security strength
	Security definition
	Rationale of our security estimates
	Security Assumption
	Tight reduction from MLWE in the ROM
	Non-tight reduction from MLWE in the QROM

	Estimated security strength
	Additional security properties
	Forward secrecy.
	Side-channel attacks.
	Multi-target attacks
	Misuse resilience

	Analysis with respect to known attacks
	Attacks against the underlying MLWE problem
	Attacks against LWE
	Primal attack.
	Dual attack
	Core-SVP hardness of Kyber

	Beyond core-SVP hardness
	A tentative gate-count estimate accounting for recent progress

	Approximations, overheads, and foreseeable improvements
	Algebraic attacks.

	Attacks against symmetric primitives
	Attacks exploiting decryption failures

	Advantages and limitations
	Advantages
	Comparison to SIDH
	Comparison to code-based KEMs
	Comparison to other lattice-based schemes
	Schemes that build a KEM directly
	LWE based schemes
	Ring-LWE based schemes
	NTRU
	Different Polynomial Rings
	Deterministic Noise.

	Brief discussion of relevant results since Nov. 2017

