Footprint scheduling for Dining-Cryptographer
networks

Anna Krasnova!, Moritz Neikes', and Peter Schwabe! *

Digital Security Group, Radboud University
Toernooiveld 212, 6525 EC Nijmegen, The Netherlands
anna@mechanical-mind.org, m.neikes@student.ru.nl, peter@cryptojedi.org

Abstract. In many communication scenarios it is not sufficient to pro-
tect only the content of the communication, it is necessary to also protect
the identity of communicating parties. Various protocols and technolo-
gies have been proposed to offer such protection, for example, anonymous
proxies, mix-networks, or onion routing. The protocol that offers the
strongest anonymity guarantees, namely unconditional sender and recip-
ient untraceability, is the Dining Cryptographer (DC) protocol proposed
by Chaum in 1988. Unfortunately the strong anonymity guarantees come
at the price of limited performance and scalability and multiple issues
that make deployment complicated in practice.

In this paper we address one of those issues, namely slot reservation.
We propose footprint scheduling as a new technique for participants to
negotiate communication slots without losing anonymity and at the same
time hiding the number of actively sending users. Footprint scheduling is
at the same time simple, efficient and yields excellent results, in particular
in very dynamic networks with a frequently changing set of participants
and frequently changing activity rate.

Keywords: DC-net, scheduling, anonymity, slot-reservation

1 Introduction

“We kill people based on metadata” — this statement by former CIA and NSA
director Michael Hayden demonstrates more than clearly that cryptographically
protecting only the content of communication is insufficient; secure communi-
cation also has to protect the identities of the communicating parties. Various
protocols and techniques have been proposed to enable anonymous communica-
tion. All of these techniques have to choose a trade-off between efficiency in terms
of throughput, latency, and scalability on the one hand and security guarantees
on the other hand. For example, anonymous proxies provide low latency and
potentially very good throughput and scalability, but all participants’ identities

* This research was conducted within the Privacy and Identity Lab (PI.lab,
http://www.pilab.nl) and funded by SIDN.nl (http://www.sidn.nl/) and by
Netherlands Organisation for Scientific Research (NWQ) through Veni 2013 project
13114. Permanent ID of this document: 215ad4d1ccbd4ee7abc763de5d2a85637. Date:
December 18, 2015.

2 Anna Krasnova, Moritz Neikes, and Peter Schwabe

are compromised if one trusted node, the proxy, is compromised. Stronger guar-
antees are offered by a cascade of proxies in onion-routing networks like Tor [17],
which were originally proposed by Syverson, Goldschlag, and Reed in [16]. How-
ever, onion-routing networks are possibly susceptible to attacks that correlate
traffic entering and leaving the network. See, for example, [11]. Mix-nets, pro-
posed already in 1981 by Chaum in [4] do not have this problem; however, they
suffer from increased latency.

The anonymity protocol that offers the strongest guarantees is the Dining-
Cryptographers protocol, also known as Dining-Cryptographers network or short
DC-net, which was introduced by Chaum in [3]. The protocol provides uncon-
ditional communication anonymity for senders and recipients, however, at the
cost of low throughput and high latency, in particular when scaling to many
participants.

Dining cryptographers. To explain how DC-net works, consider an example
with 3 participants exchanging 6-bit messages. Figure 1 depicts the example.
Each participant has a shared symmetric key with each other participant. As-
sume that participant A wants to send a message. To do so, she xors her message
with all the keys she shares with the other participants. The result is an output
that A sends out to every participant of the DC-net. The other participants per-
form the same procedure, but use a zero message instead of a meaningful one.
All outputs of all participants are xored together to reveal the meaningful mes-
sage of the participant A, because keys are canceling out (since each symmetric
key is used twice). This completes a single round of the DC-net, during which
one participant can transfer (broadcast) one message; in the next round another
participant transmits a message until all participants are done transmitting.

User A User B User C
Message: 01 0@0 11 Message: 00 069 00 Message: 00 0@0 00
Key A-B: 111@001 Key A-B: 1110?01 Key B-C: 01()&;)10
Key A-C: 101001 KeyB-C: 010010 Key A-C: 101001
Output: 000011 Output: 101011 Output: 111011
\ 00001 1@
101011
1110119
010011

Fig. 1: DC-net with tree participants and 6-bit messages

Collisions and scheduling. If two participants send in the same round, their
messages collide and become unusable. This can happen accidentally or also

Footprint scheduling for Dining-Cryptographer networks 3

intentionally from a malicious participant who is disrupting communication.
This raises the central question addressed in this paper: How does each par-
ticipant know when it is his or her turn to send? Note that many standard slot-
reservation protocols as used, for example, in dynamic time-division multiple-
access (TDMA) networks are not applicable, because they would compromise
anonymity. The task of slot-reservation in DC-net is to agree on a sending sched-
ule in a way that each participant knows when to send, but does not learn who
is sending in the other slots.

Generally there are three different approaches to solve this problem. The first
approach comprises so-called reservation-map methods. These methods employ
a scheduling vector consisting of slots; each slot represents a future round with
a corresponding index number. To reserve a round, a participant marks the
corresponding slot in the scheduling vector as occupied. The second approach
is to use collision-resolution algorithms. The third approach is to use secure
multi-party computation to obtain a secret permutation that assigns rounds to
participants.

Contributions of this paper. This paper presents a novel approach that be-
longs to the class of reservation-map methods. The general problem of this class
of methods is that they essentially defer the problem of undetected collisions
from the communication phase to a slot-reservation phase. One way to solve this
problem is to use many more slots than participants, to keep the probability of
collisions low. However, this leaves many communication slots unused and dras-
tically reduces the throughput of the DC-net. We present footprint scheduling
as a simple and efficient way to implement the slot-reservation phase without
the loss of throughput. Footprint scheduling is the first scheduling algorithm
to combine reasonable communication overhead that scales logarithmic in the
number of participants, absence of computation overhead, and naturally han-
dling participants joining and leaving the network.

Availability of results. To maximize re-usability of our results, we made
the software used to produce simulation results publicly available at https:
//github.com/25A0/DCnet-simulator.

Notation. We write 0F for the string that consists of B zeros. All logarithms
in this paper are to the base 2.

Organization of this paper. Section 2 reviews the state of the art in schedul-
ing for DC-net. Section 3 introduces footprint scheduling and Section 4 describes
how to tune the parameters of footprint scheduling and compares its performance
to previous approaches. Section 5 describes a protection mechanism against dis-
ruption. Section 6 summarizes the key strengths of footprint scheduling.

2 Existing scheduling methods

In this section we describe the previous approaches to scheduling in DC-net. As
listed in the previous section, we group the algorithms into three categories: reser-
vation maps, collision resolution, and secure multi-party computation (MPC).

https://github.com/25A0/DCnet-simulator
https://github.com/25A0/DCnet-simulator

4 Anna Krasnova, Moritz Neikes, and Peter Schwabe

Reservation maps. Reservation maps were already introduced as one possible
way to handle scheduling in the original DC-net paper by Chaum [3]. The idea
is to perform a separate scheduling phase to assign rounds to particular partici-
pants to avoid collisions. During this phase participants can reserve a round of
DC-net by setting a bit of a scheduling message at the position corresponding
to the round number. Note that also scheduling messages are sent through the
anonymous DC-net channel; i.e., they are xored with all the shared keys of the
other participants. Disruptions of the scheduling message can be detected with a
certain probability by checking if the Hamming weight of the message is smaller
or equal than the number of participants. The downside of this approach is that,
because of the birthday paradox, the number of bits in the scheduling message
must be quadratic in the number of participants to avoid collisions with high
probability. Reservation maps are used by Herbivore, an implementation of DC-
net presented by Goel, Robson, Polte, and Sirer in [9]. Herbivore optimizes the
size of the scheduling message by allowing some collisions during message cycle
depending on the message size (collisions for smaller messages are more likely).
For performance comparison in Section 4 we also performed such optimization,
however we decided for optimization that does not depend on the size of the
message (See Appendix A for details).

The length of the scheduling message can be reduced if instead of bits repre-
senting rounds, one would use elements of the additive group of integers modulo
m [12]. After all the scheduling messages of participants are added up, elements
of value 0 indicate an unreserved round, elements of value 1 indicate a reserved
round, all other values indicate collisions.

Collision resolution. The second approach proposed by Chaum in [3] is to
use a contention algorithm with discrete time slots and resolve collisions by
retransmitting the messages. A common example of such an algorithm is slotted
ALOHA [14]. In Slotted ALOHA participants pick a time slot for transmission
at will. Whenever a collision happens, participants wait for a random amount
of time before they pick a new time slot for retransmission. The simplicity of
the protocol is countered by the limitation of the transmission capacity of the
network due to collisions.

One way to improve transmission capacity in collision resolution is through
a technique called superposed receiving. The idea is to derive the retransmission
schedule for collided messages from the result of a collision. New transmissions
have to wait until a collision has been resolved. In [13, Sec. 3.1.2.3.2], A. Pfitz-
mann presents such an algorithm, which is an improvement of the tree algorithm
that was independently proposed by Capetanakis in [2] and by Tsybakov and
Mikhailov in [18]. Pfitzmann calls this algorithm tree-like collision resolution with
superposed receiving; in the following, we refer to this algorithm as Pfitzmann’s
algorithm. Let the number of messages that collided be s, then the protocol
guarantees that the collision will be resolved in exactly s retransmission steps.
Additionally, this protocol guarantees fair usage of the channel for all sending
participants. Note that this algorithm requires DC-net to be modified to work
on integers modulo m > 2 instead of simple xors. This makes it possible to com-

Footprint scheduling for Dining-Cryptographer networks 5

pute the “average” of the collided messages (treated as an integer). Participants
that sent a message smaller than the average retransmit; participants that sent
a larger message wait. As soon as only two messages collided, only one par-
ticipant retransmits; the other message is recomputed locally. A more detailed
description of the algorithm can be found in [19] and [7, Sec 3.2.2].

Another algorithm, using a similar approach, was presented in [1] by Bos
and Boer. It also computes a retransmission schedule for collided messages and
requires s retransmissions after s messages collided. However, it has a larger
overhead in header messages and is computationally more expensive than Pfitz-
mann’s algorithm.

Note that these superposed-receiving techniques can also be applied to slot
reservation as proposed by Waidner in [19]. Pfitzmann’s algorithm is then used to
resolve collisions of reservation messages. Each reservation message contains the
number of the round in which a participant wants to send. With this approach the
traffic load does not depend on the length of the messages transmitted through
DC-net as in the original Pfitzmann’s algorithm.

The first protective measure against disruption during the scheduling phase
was presented by Waidner and B. Pfitzmann in [20,21]. The idea is to investigate
the reservation phase in case of impossible results of the specific scheduling
algorithm used. For example, in Pfitzmann’s algorithm, the number of initially
collided messages should be not more than the predefined maximum. To enable
investigation, all the outputs during the scheduling phase are protected by output
commitments. In the special phase called palaver phase any participant can start
an investigation of the scheduling phase in order to detect disrupters.

Secure multi-party computation. In [10], Golle and Juels propose two new
versions of DC-net that allow detection and identification of disrupters with high
probability by using zero-knowledge proofs. They do not consider the problem
of collisions (and thus reservation of rounds) in their solution; they comment
that “the problem can be avoided through techniques like secure multi-party
computation of a secretly distributed permutation of slots among players, but
this is impractical”.

Studholme and Blake propose in [15] a way to implement such a multi-party
computation called secret shuffle by organizing a Mix-net with participants of
DC-net serving as nodes. Encrypted round-reservation requests are transmitted
through this Mix-net to obtain a secretly permuted vector of re-encrypted re-
quests. Re-encryption is performed such that a participant can recognize his own
request only after the permutation is completed. His reserved round number can
be derived from the position of the request in the vector.

This idea is used in the Master’s thesis of Franck [7], in which he derives a
fully verifiable variant of DC-net. Later, verifiable DC-net was rediscovered in [6]
and implemented under the name Verdict. The advantage of Verdict is that it
allows switching between traditional DC-net and verifiable DC-net, depending
on the presence of disruption. For scheduling, Verdict uses a similar approach
as [15,7] and the same as in another implementation of DC-net by the same
group, Dissent [5,22].

6 Anna Krasnova, Moritz Neikes, and Peter Schwabe

In [8], Franck proposes a scheduling for DC-net based on the collision-resolution
protocol SICTA. This scheduling protocol is very similar to Pfitzmann’s collision
resolution algorithm, the only difference being that it operates with multiplica-
tion of ciphertexts instead of addition. The author proposes to use this algorithm
to produce a secret shuffle of public keys of participants to establish a sched-
ule. The protocol is non-deterministic; it achieves a maximum stable throughput
(MST) of 0.924 messages per round. Disruption in the scheduling phase in this
protocol is prevented by using zero-knowledge proofs.

3 Footprint scheduling

In this section, we introduce footprint scheduling. Footprint scheduling is similar
to the map-reservation algorithm described by Chaum [3]; however, it requires
significantly shorter reservation vectors and drastically decreases the likelihood
of (undetected) collisions in these vectors.

In the map-reservation algorithm, the A active participants (i.e., participants
who want to send a message in the next round) of a DC-net with a total of N
users can reserve one out of S slots by inverting the corresponding bit in a
reservation vector of S bits. The reservation vector is then transmitted through
DC-net, and the resulting reservation vector, i.e., the xor of all the individual
reservations, is broadcast to all participants. See also Section 2. An undetected
collision occurs in this vector as soon as an odd number of participants attempts
to reserve the same slot. This event is obviously undesirable, since it leads to
collisions of messages during the sending phase. To decrease the probability
of such an event, the original paper [3] suggests to choose the length of the
reservation vector to be quadratic in the number of participants.

Footprints instead of bits. The first idea of footprint scheduling is to use
B > 1 bits in the reservation vector to represent each slot of the schedule.
The reservation vector is thus extended to a length of B - S bits. A participant
attempts to reserve a specific slot by changing the corresponding B bits of the
reservation vector to a random value f € {0,1}5\ {0}Z. This value is called his
footprint. Figure 2a demonstrates an example of a reservation vector with 3-bit
footprints. DC-net will broadcast the xor of all individual reservation vectors
to the participants, just as for plain map reservation. If the reservation vector
contains the footprint of a participant, it is likely that no other participant tried
to reserve that slot. If instead the participant finds a different value, this indicates
that at least one other participant tried to reserve the same slot. In Figure 2a
one can see that participants C, D and F try to reserve the same slot. All three
of them can recognize the collision since their original footprint s are not in the
result of this round.

Scheduling cycles and message cycles. Using B bits per slot in the reserva-
tion vector alone would simply blow up the reservation vector by a factor of B.
This is where footprint scheduling applies a second modification to reservation
maps, which allows to drastically reduce the size of S (for example, to S = 32

Footprint scheduling for Dining-Cryptographer networks 7

000{000|000|000|000(000{011|000
000({000|000{101|000|{000{000|000
000{100|000|000|000{000{000|000
101|000({000{000{000{000|000|000
000{000|000|000|010|000{000|000
000{000|000|000|000|000{000{011

R|[[101]100]000[101]010]000[011]011

000{000|000({000({000{000{110|000
000{000|000({101{000{000{000|000
000{011{000({000({000{000{000|000
000{100|000({000({000{000{000|000
000{000|000({000({001{000{000|000
000{010|000({000({000{000{000|000

R][[000[101[000]101]001]000]110]000

T T QW
MmO QW

(b) The state of the reservation vec-
tor after the second scheduling round
of footprint scheduling.

(a) Ome scheduling round of footprint
scheduling with 3-bit footprint s.

Fig. 2: The result of two scheduling rounds in footprint scheduling

for up to 10,000 participants). The idea is to iterate slot reservation through a
scheduling cycle consisting of R scheduling rounds. In the first round, each par-
ticipant just attempts to reserve a slot as described above. In each subsequent
round, the behavior depends on whether the participant detected a collision in
“his” slot in the previous round. If not, he will reserve the same slot again with
a fresh random footprint. If the participant detected a collision, he flips a coin
to choose between two possible actions. If the coin is 1, the participant backs
off and does not continue to attempt to reserve any slot during this scheduling
cycle. If the coin is 0, he tosses another coin'. If that second coin is 1, he stays
in his slot and reserves it again with a fresh random footprint. Otherwise he
randomly picks one of the slots that were left empty in the previous round (i.e.,
the ones that produced a zero xor of all footprints) and places a fresh random
footprint in the corresponding slot. If no such empty slot exists, he backs off for
the rest of the scheduling cycle.

In the last round of a cycle, all participants that detected a collision in their
slot in the second but last round, back off and do not attempt to reserve a slot in
the last round. This leaves the corresponding slots empty in the very last round.
When the schedule is then executed, all empty slots can be skipped as in plain
reservation maps.

Let us return to the example. After the first round, participants A, B and E
have successfully reserved slots 7, 4 and 5, respectively. Participants C, D and
F know that their reservation collided with reservation attempts by other par-
ticipants. Slots 1, 3, 5 and 8 appear empty after the first round. Figure 2b
demonstrates the reservation vector after the second round. Participants D and
F have moved away from slot 2 to one of the empty slots, while participant C
stayed in the first slot. Note that participants A, B and E placed a fresh footprint
in the slots they successfully reserved during the first round. They will continue

! Note that tweaking the bias of these coin tosses is necessary to reach peak perfor-
mance in large networks. The pseudocode description of the algorithm in Appendix B
shows optimal probabilities for cases where users are allowed to reserve multiple slots.

8 Anna Krasnova, Moritz Neikes, and Peter Schwabe

to generate new footprints each round to reveal undetected collisions in case
they occurred in the previous rounds.

By the end of the scheduling cycle several users hold reservations of slots
in the following message cycle. The actual transfer of user messages in DC-net
happens during this cycle. A message cycle has a maximum of S rounds, the
maximum amount of slots users could reserve during the scheduling cycle.

Combining scheduling cycles and message cycles. The short length of
a scheduling vector is advantageous since scheduling cycles and message cycles
can now be combined to reduce latency in DC-net. For this, one has to have
the number of scheduling rounds R be equal to (or smaller than) the number
of slots S in the scheduling vector. Then the scheduling vector can be attached
as a header to a message in the message cycle to agree on the schedule of the
upcoming message cycle.

Multiple reservations. The activity rate of the network participants (i.e. the
percentage of users who want to send data) will depend on the application for
which a DC-net is used; for an anonymous file sharing application, the activity
rate might hit 100% regularly, while a chat application might have a much lower
activity rate on average. The algorithm that we described up to this point is
not well-suited for networks with a very low activity rate. If there are less than
S active participants, and each of them is allowed to reserve exactly one slot,
then the remaining slots will be unused. This has two disadvantages: On the one
hand, it limits the potential throughput of small, inactive networks. On the other
hand, this leaks information about the number of actively sending participants
in the network. If only 4 out of 16 slots are reserved at the end of a scheduling
cycle, then it is very likely that there are exactly 4 actively sending participants.

Both disadvantages can be solved by allowing all participants to reserve up
to S slots. Thus, at the beginning of a scheduling cycle, each participant picks
up to S slots at random, and tries to individually reserve each of them, just as
described above. It is important to note that different footprints have to be used
for each slot.

A pseudocode description of footprint scheduling is given in Appendix B. It
also shows the additional steps that have to be taken in order to allow partici-
pants to reserve multiple slots.

4 Benchmarks and comparison

This section shows how to optimize the configuration of footprint scheduling, and
compares its performance to the performance of other scheduling algorithms. In
the first part of this section, we will very briefly inspect the performance of foot-
print scheduling for different configurations in order to find optimal parameters.
After that, we will compare its performance to the performance of Pfitzmann’s
scheduling algorithm and to Chaum’s map-reservation scheduling algorithm.

Choice of parameters. There are three parameters that can be tweaked to
minimize scheduling overhead: B, the number of bits per slot, S, the number

Footprint scheduling for Dining-Cryptographer networks 9

of slots, and R, the number of scheduling rounds per scheduling cycle. The
scheduling overhead is measured in terms of the amount of scheduling data that
each participant has to send for each successful reservation that the network
achieves. During one scheduling cycle, each participant will send B -S - R bits of
scheduling data. At the end of the cycle, there will be S successful reservations.
Ideally, all S slots were successfully reserved, so that S =5 But S might also
be smaller than S if there were undiscovered collisions or unused slots in the
schedule. Thus, the overhead O can be measured by

S-R-B
—

O (1)

Our optimization is mostly based on this formula, and we use simulations to
test how different configurations perform. Schedule convergence is an important
metric for this optimization. A messaging slot has converged if there is at most
one participant who tries to reserve this slot. A schedule has converged if all
S slots have converged. If a slot did not converge by the end of a scheduling
cycle, then no participant can successfully send a message in that slot once the
schedule is executed. It is thus crucial for the throughput of the algorithm that
most of the slots converge.

We will start by minimizing R - B. Figure 3 shows how many scheduling
rounds are necessary to reach schedule convergence? for different values of B.
Increasing B leads to a decrease in R, but it is easy to see that B - R is minimal
for B = 2, regardless of the choice of S. Changing the network size does not
affect this outcome.

In the previous simulation, the number of participants was fixed. But in order
to determine an optimal value for R in general, we will now look at networks of
various sizes. Figure 4 shows the number of scheduling rounds that are necessary
to resolve all collisions for B = 2 bits and various values of S. The number of
required rounds is clearly influenced by both, the network size and the number of
slots. Although schedules converge faster on average when the number of slots is
small, it is not recommended to choose S < R: Similar to Pfitzmann’s scheduling
algorithm, each message in footprint scheduling depends on the content of the
previous message. Therefore, the scheduling data needs to be sent in individual
packages. For B = 2,5 = 16, these packages will only hold 32 bits of data. When
this data is sent over the Internet, then the TCP-IP header of at least 32 Byte
will add a massive overhead. But if S > R, then the current message cycle and
the scheduling cycle for the following schedule can be interleaved as described
in Section 3. This will decrease the relative overhead of the TCP-IP header and
network delay. For this reason, we choose S = 32, which requires far less than
32 scheduling rounds, so that scheduling and message data can be interleaved.

Next, we will inspect the relation between the network size and the number
of scheduling rounds. The dashed blue line in Figure 4 shows log(N), with N
being the number of participants in the network. For S = 32, no more than

2 Note that, while it is easy to detect in a simulation whether all collisions have been
resolved, it is not trivial to detect this in practice.

10 Anna Krasnova, Moritz Neikes, and Peter Schwabe

%) # Slots
g =K
_E E316
[

5 o { =k
g T
= | 128

. Lr |

2 4 6 8
Bits per slot

Fig.3: The number of rounds that are necessary to resolve all collisions, for
5000 participants and different values of B and S.

log(N) rounds are necessary on average for the schedule to converge. Thus,
rather than having one fixed value for R, we can dynamically determine R based
on the current size of the network.

Performance comparison. With this configuration, S = 32, R = log(N),
B = 2, we will now show how footprint scheduling performs compared to other
scheduling algorithms. For this, we will show benchmark results for three sce-
narios: One with a very high activity rate, as it may occur for torrent downloads
and video streaming, one with a very low activity rate, which could simulate
instant-messaging, as well as two scenarios with intermediate activity rates.

We will compare the performance of footprint scheduling to the performance
of Chaum’s reservation map, as well as to the performance of Pfitzmann’s colli-
sion resolution algorithm. We optimized the ratio between the number of partic-
ipants and the number of slots for both algorithms using a series of simulations.
We should note that the scheduling overhead of Chaum’s reservation map de-
pends heavily on the presence or absence of an estimation of the current activity
rate. An abstract description of an algorithm that can be used to predict the
activity rate is given in [9, pp. 10-11]. But especially in large networks where
message cycles can take multiple minutes, the number of users might change
drastically between two subsequent rounds. This makes it particularly difficult
to predict the activity rate of the following cycle correctly. In our simulation,
we measure the performance of Chaum’s algorithm for the case that there is no
estimation of the activity rate. Note that footprint scheduling is only configured
based on the size of the network; it does not require an estimate of the num-

Footprint scheduling for Dining-Cryptographer networks 11

(2] # Slots
'8 10+
S 8
o
= 16
©
L 32
>
5 -
= — 64
@ — 128
0 -

1 1 1 1
0 2500 5000 7500 10000
Participants

Fig. 4: The number of rounds that are necessary to resolve all collisions for various
numbers of slots and networks of different sizes. These results were produced with
2 bit footprints.

ber of active users. More details on the optimization process can be found in
Appendix A.

Performance is measured in terms of scheduling overhead, as defined in the
beginning of this section. Note that the size of the message itself is not taken into
account in our simulations because the absolute overhead to reserve a slot is not
affected by the message size. Also, while Pfitzmann’s algorithm could be used to
resolve collisions between actual messages, we implement it for the scheduling
purposes, which is in general more efficient for reasonable message sizes.

Before presenting results of simulation, we demonstrate in Table 1 theoretical
estimations of scheduling overhead according to the formulas given in Table 2 in
Appendix C. These formulas are valid in case of no collisions, which means that
after completion of the scheduling protocol all slots are reserved successfully. In
such conditions footprint scheduling is advantageous in all considered network
sizes. However, results of simulations show somewhat different picture, which we
discuss below.

In our simulations we do not consider the number of participants in the
network to be larger than 10, 000. Significantly larger networks are almost always
impractical because the amount of message data that is produced by the entire
network grows quadratically with the number of participants.

Figure 5 shows the performance of the three scheduling algorithms in net-
works with different activity rates. The scheduling overhead of both, Pfitzmann’s
algorithm and footprint scheduling, scale with the activity rate of the network.

12 Anna Krasnova, Moritz Neikes, and Peter Schwabe

The overhead of Chaum’s reservation maps increases with a decrease in the
network’s activity rate, since the available slots cannot be used as efficiently.
Chaum’s algorithm does, however, offer the lowest scheduling overhead for large
networks. In theory, Pfitzmann’s algorithm offers a scheduling overhead in large,
active networks that is similar to what Chaum’s reservation maps achieves, but
we will address in Section 6 why Pfitzmann’s algorithm is not practical in large
networks.

In a network where the activity rate and the network size do not change dras-
tically, the scheduling overhead can be minimized by choosing either Chaum’s
reservation maps or Pfitzmann’s algorithm, depending on the exact characteris-
tics of the network.

However, in a dynamic network where network size and activity rate change
over time, footprint scheduling gives a better overall performance: While the
activity rate is low, the network can benefit from the reduced scheduling over-
head that footprint scheduling offers. In large networks and in networks with a
very high activity rate, footprint scheduling still adds a slight increase in the
scheduling overhead, compared to Chaum’s reservation maps.

1% 10%

10.04

7.54

5.0 . S — e - -
S - = - . 1 Algorithm
L Chaum
% 50% 100% Footprint
a ES Pfitzmann

10.04

7.5

..)| . 4 | . L] 1 .
5.0 I e e e

T T T T T T T T T T T T
100 500 1000 2000 5000 10000 100 500 1000 2000 5000 10000
Participants

Fig. 5: The overhead of all three scheduling algorithm in networks with different
activity rates.

Footprint scheduling for Dining-Cryptographer networks 13

Participants
Algorithm 100 200 500 1000 2000 5000 10,000
Footprint (B = 2) 13.29 15.29 17.93 19.93 21.93 24.58 26.58
Pfitzmann 24.93 27.93 31.9 34.9 37.941.86 44.86

Herbivore/Chaum (A =1%) | 3200 3200 3200 3200 3200 3200 3200
Herbivore/Chaum (A =10%) | 320 320 320 320 320 320 320
(

Herbivore/Chaum (A = 50%) 64 64 64 64 64 64 64

Herbivore/Chaum (A =100%)| 32 32 32 32 32 32 32

Table 1: Average scheduling overhead in Bytes (Based on the formulas given in
Table 2).

5 Disruptions and footprint scheduling

Recall that disruptions are collisions that are intentionally induced by a denial-
of-service attacker or a participant who attempts to increase his transmission
bandwidth on the cost of the bandwidth of other participants. In this section
we briefly describe a possible protection against an attacker who attempts to
disrupt the scheduling phase of footprint scheduling.

The literature describes two approaches to cope with disruption in DC-net.
The first approach is to open up special meaningless (trap) messages of partic-
ipants after (suspected) disruption [3,1,21] and thus reveal which participants
did not behave according to the protocol. The second approach is to use zero-
knowledge proofs [10,5,6,8]. Our technique follows the first approach since it does
not require any of the two computationally-secure variants of DC-net introduced
in [10]. Additionally, scheduling messages can be opened without compromising
anonymity of participants. This holds if the opened schedule is afterwards dis-
carded and if the sending rates are constant, so sending wishes of a particular
participant cannot be learned. One of the ways to achieve constant sending rates
is to let users regularly reserve slots for dummy messages. Dummy messages in
turn can be used as traps to protect the message phase from disruption.

The idea is to use a PRNG with a secret seed for all randomness that is re-
quired for footprint scheduling (i.e., slot positions, footprints and random choice
to stay in a slot or back off). To prevent cheating, users are obliged to commit
to the seed. Note that this is an obvious choice also for efficiency reasons. To
protect against disrupters, each participant uses a new random seed for every
scheduling cycle and commits to this seed before scheduling.

Whenever the decision is made to open a scheduling cycle, each participant
publishes the seed used for this cycle. These seeds are checked against the com-

14 Anna Krasnova, Moritz Neikes, and Peter Schwabe

mitments and then the scheduling vectors of each round are recomputed and
compared with the scheduling vectors that were previously obtained from the
DC-net output. Note, keys and messages output by each individual participant
are not opened and verified at this stage. If these recomputed scheduling vectors
match, all participants followed the rules. If not, at least one of the participants
did not follow the protocol. In order to find the disrupter, all participants reveal
their keys used in the scheduling phase. To prevent disrupters from wrongly ac-
cusing honest participants by revealing an incorrect key, one can enforce that
participants also commit to those shared keys in advance.

Such a technique provides performance improvements when the scheduling
algorithm has a certain chance of undetected collisions (Footprint, Herbivore)
for the following reason. Undetected collisions during the scheduling cycle lead
to collisions during the message cycle. How can one efficiently distinguish an
honest collision of messages due to such a problem and a disruption? Traps
(non-meaningful messages that can be opened with no harm to anonymity) will
not be helpful to answer this question for every single case of messages colliding.
Opening of keys and rounds is too costly for such a check, ideally one would want
to apply heavy methods only if it is known that there is a disrupter. Our method
allows to perform a quick and efficient check if there was a disruption or not by
opening only seeds used for generating footprints, and only after that decide if
to open the scheduling cycle, which involves opening keys shared between users
and verifying if individual outputs were made correctly.

6 Advantages of footprint scheduling

In this section, we provide a detailed description of the main advantages of the
footprint algorithm.

As mentioned earlier, footprint scheduling inherits from the reservation-map
algorithm. In particular, footprint scheduling involves no computational over-
head for participants. The algorithm improves on reservation maps by reducing
the probability of undetected collisions in the reservation vector. In networks
with very high activity rate the cost for this improvement can be a very slight
increase in scheduling overhead, depending on how many undetected collisions
the reservation-map algorithm accepts. If message collisions are prohibitive or if
the network does not have a very high activity rate, footprint scheduling notice-
ably reduces the scheduling overhead compared to reservation maps. For details
see Section 4.

Further, unlike superposed receiving and MPC-based scheduling protocols,
footprint scheduling naturally handles events of participants joining or leaving
the DC-net during the schedule negotiation. When a participant disconnects, his
reservation slot will appear free in the next round. Any participant that is in
the process of resolving a collision can now move to this slot. Thus, footprint
scheduling re-allocates slots that become available, even in the middle of a sched-
ule cycle. At the same time footprint keeps scheduling and message cycles short,

Footprint scheduling for Dining-Cryptographer networks 15

which permits fast joining to the network. That in turn improves anonymity,
allowing potentially a bigger anonymity set in the new cycle.

When using Chaum’s reservation map, a good estimate of the network’s
activity rate is necessary in order to optimize the scheduling overhead (for details,
see Section 4). With footprint scheduling, the success chance of a reservation
attempt automatically increases if fewer participants bid for a slot in the next
message cycle. Senders will be able to reserve a slot in fewer attempts if the
activity of other participants goes down, and it will take more attempts if other
participants become more active. This makes it unnecessary to estimate the
activity rate.

Just like Pfitzmann’s scheduling algorithm, footprint scheduling is an inter-
active protocol, in the sense that each message in the protocol depends on the
content of the previous one. For Pfitzmann’s algorithm, the protocol is completed
after A successive messages, where A is the number of active network partici-
pants. In the case of footprint scheduling, the protocol is completed after .S suc-
cessive messages, where S < A for large networks, as we showed in Section 4. In
practice, network latency alone can be a major obstacle to complete a protocol of
A messages in a large network. The following example shows a best-case scenario
for a network with 10,000 active participants: Assume that all participants live
in major US cities. In this case, the average latency between them will be about
33ms on average at the time of this writing®. Thus, there will be a delay of at
least 66ms between each message. With 10,000 active participants, this means
that the protocol is completed after 10,000 - 66ms = 660s = 11min.

Recall that Pfitzmann’s scheduling protocol cannot be completed if a partic-
ipant leaves before the protocol is completed. It is impractical to demand that
not a single participant must leave the network over a period of 11 minutes, es-
pecially when some participants are connected via personal mobile devices like a
phone or a laptop. Footprint scheduling does not suffer from this problem since
each protocol run is completed much faster, but also since the protocol can be
completed even if users disconnect from the network.

Footprint scheduling is also advantageous due to the fact that it hides the
number of actively sending users in the network from an eavesdropping adver-
sary. Such information can serve as a marker of upcoming social events; for
example, the Tor network showed largely increased activity just before the Arab
Spring®.

One of the advantages of DC-net over Mix-nets (and onion routing) is that
it hides the number of actively sending users due to the fact that all the users
have to contribute to the network in order to facilitate anonymous sending.
Unfortunately, previous efficient scheduling protocols either allow to estimate the
number of active users by counting the number of empty slots in the scheduling
messages, or they require to know the number of active users to operate.

Footprint scheduling disguises the number of active users as long as each
user is allowed to reserve multiple slots. Even very small networks, the number

3 http://ipnetwork.bgtmo.ip.att.net/pws/network_delay.html
4 http://www.monitor.upeace.org/innerpg.cfm?id_article=816

http://ipnetwork.bgtmo.ip.att.net/pws/network_delay.html
http://www.monitor.upeace.org/innerpg.cfm?id_article=816

16 Anna Krasnova, Moritz Neikes, and Peter Schwabe

of free slots does not give away the number of active users. An internal observer
can gain a rough estimate of the number of active users over a longer period,
based on the number of collisions that they experience. However, for an external
observer, it is impossible to determine reliably whether there is a collision in any
of the slots, since footprints change with every round. Further, for an external
observer it is impossible to estimate if there were collisions in any of the slots
since footprints change from round to round even if there were no collisions. In
footprint scheduling the number of slots as well as discussion rounds does not
change with the number of active users. Altogether, this prevents estimation of
actively sending participants if footprint scheduling is used.

Last but not least, footprint scheduling has an advantage over other map
reservation protocols due to fast and efficient method of verifying if a collision
in message cycle was caused by an undetected collision in scheduling cycle or by
a disruption. For details, see Section 5.

References

1. Jurjen N. Bos and Bert den Boer. Detection of disrupters in the DC protocol. In
Jean-Jacques Quisquater and Joos Vandewalle, editors, Advances in Cryptology —
EUROCRYPT 89, volume 434 of Lecture Notes in Computer Science, pages 320—
327. Springer-Verlag Berlin Heidelberg, 1989. 5, 13

2. John I. Capetanakis. Tree algorithms for packet broadcast channels. IEEE Trans-
actions on Information Theory, IT-25(5):505-515, 1979. 4

3. David Chaum. The dining cryptographers problem: Unconditional sender and
recipient untraceability. Journal of Cryptology, 1(1):65-75, 1988. http://www.
cs.ucsb.edu/~ravenben/classes/595n-s07/papers/dcnet-jcrypt88.pdf. 2, 4,
6, 13

4. David L. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2):84-90, 1981. www.freehaven.
net/anonbib/cache/chaum-mix.pdf. 2

5. Henry Corrigan-Gibbs and Bryan Ford. Dissent: Accountable anonymous group
messaging. In Proceedings of the 17th ACM Conference on Computer and Com-
munications Security, pages 340-350. ACM, 2010. http://dedis.cs.yale.edu/
dissent/papers/ccs10/dissent.pdf. 5, 13

6. Henry Corrigan-Gibbs, David I. Wolinsky, and Bryan Ford. Proactively account-
able anonymous messaging in verdict. In Proceedings of the 22nd USENIX Con-
ference on Security, pages 147-162. USENIX Association, 2013. http://dedis.
cs.yale.edu/dissent/papers/verdict.pdf. 5, 13

7. Christian Franck. New directions for dining cryptographers. Master’s thesis,
University of Luxembourg, 2008. http://secan-lab.uni.lu/images/stories/
christian_franck/FRANCK_Christian_Master_Thesis .pdf. 5

8. Christian Franck. Dining cryptographers with 0.924 verifiable collision resolution,
2014. http://arxiv.org/abs/1402.1732. 6, 13

9. Sharad Goel, Mark Robson, Milo Polte, and Emin Gun Sirer. Herbivore: A Scal-
able and Efficient Protocol for Anonymous Communication. Technical Report
2003-1890, Cornell University, 2003. http://www.cs.cornell.edu/People/egs/
papers/herbivore-tr.pdf. 4, 10

http://www.cs.ucsb.edu/~ravenben/classes/595n-s07/papers/dcnet-jcrypt88.pdf
http://www.cs.ucsb.edu/~ravenben/classes/595n-s07/papers/dcnet-jcrypt88.pdf
www.freehaven.net/anonbib/cache/chaum-mix.pdf
www.freehaven.net/anonbib/cache/chaum-mix.pdf
http://dedis.cs.yale.edu/dissent/papers/ccs10/dissent.pdf
http://dedis.cs.yale.edu/dissent/papers/ccs10/dissent.pdf
http://dedis.cs.yale.edu/dissent/papers/verdict.pdf
http://dedis.cs.yale.edu/dissent/papers/verdict.pdf
http://secan-lab.uni.lu/images/stories/christian_franck/FRANCK_Christian_Master_Thesis.pdf
http://secan-lab.uni.lu/images/stories/christian_franck/FRANCK_Christian_Master_Thesis.pdf
http://arxiv.org/abs/1402.1732
http://www.cs.cornell.edu/People/egs/papers/herbivore-tr.pdf
http://www.cs.cornell.edu/People/egs/papers/herbivore-tr.pdf

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Footprint scheduling for Dining-Cryptographer networks 17

Philippe Golle and Ari Juels. Dining cryptographers revisited. In Christian
Cachin and Jan L. Camenisch, editors, Advances in Cryptology — EUROCRYPT
2004, volume 3027 of Lecture Notes in Computer Science, pages 456—473. Springer-
Verlag Berlin Heidelberg, 2004. http://www.iacr.org/cryptodb/archive/2004/
EUROCRYPT/2389/2389.pdf. 5, 13

Steven J. Murdoch and George Danezis. Low-cost traffic analysis of tor. In 2005
IEEE Symposium on Security and Privacy, pages 183-195. IEEE, 2005. https:
//www.cl.cam.ac.uk/~sjm217/papers/oaklandO5torta.pdf. 2

Andreas Pfitzmann. How to implement ISDNs without user observability - Some
remarks. Technical report, Department of Computer Science, University of Karl-
sruhe, 1985. Internal report 14/85. 4

Andreas Pfitzmann. Diensteintegrierende Kommunikationsnetze mit teil-
nehmeriberprifbarem Datenschutz. PhD thesis, Fakultat fiir Informatik, Uni-
versitat Karlsruhe, 1990. http://dud.inf.tu-dresden.de/sirene/publ/Pfit_
88_0.pdf, http://dud.inf.tu-dresden.de/sirene/publ/Pfit_88_1.pdf, http:
//dud.inf.tu-dresden.de/sirene/publ/Pfit_88_2.pdf, http://dud.inf.
tu-dresden.de/sirene/publ/Pfit_88_3.pdf, http://dud.inf.tu-dresden.de/
sirene/publ/Pfit_88_4.pdf, http://dud.inf.tu-dresden.de/sirene/publ/
Pfit_88_5.pdf, http://dud.inf.tu-dresden.de/sirene/publ/Pfit_88_6.pdf.
4

Lawrence G. Roberts. Aloha packet system with and without slots and capture.
SIGCOMM Comput. Commun. Rev., 5(2):28-42, 1975. http://www.disco.ethz.
ch/alumni/pascal/refs/rn_1975_roberts.pdf. 4

Chris Studholme and lan Blake. Multiparty computation to generate secret per-
mutations. IACR Cryptology ePrint Archive: Report 2007/353, 2007. http:
//eprint.iacr.org/2007/353. 5

Paul F. Syverson, David M. Goldschlag, , and Michael G. Reed. Anonymous
connections and onion routing. In 1997 IEEE Symposium on Security and Privacy,
pages 44-54. IEEE, 1997. www.onion-router.net/Publications/SSP-1997.pdf.
2

Tor project: Anonymity online. https://www.torproject.org/(accessedMari?,
2015). 2

Boris S. Tsybakov and V. A. Mikhailov. Free synchronous packet access in
a broadcast channel with feedback. Problemy Peredachi Informatsii, 14(4):32—
59, 1978. http://www.mathnet.ru/php/getFT.phtml?jrnid=ppi&paperid=1558&
what=fullt&option_lang=eng (in Russian). 4

Michael Waidner. Unconditional sender and recipient untraceability in spite of
active attacks. In Jean-Jacques Quisquater and Joos Vandewalle, editors, Advances
in Cryptology — EUROCRYPT ’89, volume 434 of Lecture Notes in Computer
Science, pages 302-319. Springer-Verlag Berlin Heidelberg, 1990. 5

Michael Waidner and Birgit Pfitzmann. The dining cryptographers in the disco:
Unconditional sender and recipient untraceability with computationally secure ser-
viceability (abstract). In Jean-Jacques Quisquater and Joos Vandewalle, editors,
Advances in Cryptology — EUROCRYPT ’89, volume 434 of Lecture Notes in Com-
puter Science, page 690. Springer-Verlag Berlin Heidelberg, 1990. see also full
version [21]. 5, 17

Michael Waidner and Birgit Pfitzmann. The dining cryptographers in
the disco: Unconditional sender and recipient untraceability with compu-
tationally secure serviceability. Technical report, Universitdt Karlsruhe,
1998. See also abstract [20], http://dm.ing.unibs.it/giuzzi/corsi/Support/
papers-cryptography/WaPf1_89DiscoEngl.pdf. 5, 13, 17

http://www.iacr.org/cryptodb/archive/2004/EUROCRYPT/2389/2389.pdf
http://www.iacr.org/cryptodb/archive/2004/EUROCRYPT/2389/2389.pdf
https://www.cl.cam.ac.uk/~sjm217/papers/oakland05torta.pdf
https://www.cl.cam.ac.uk/~sjm217/papers/oakland05torta.pdf
http://dud.inf.tu-dresden.de/sirene/publ/Pfit_88_0.pdf
http://dud.inf.tu-dresden.de/sirene/publ/Pfit_88_0.pdf
http://dud.inf.tu-dresden.de/sirene/publ/Pfit_88_1.pdf
http://dud.inf.tu-dresden.de/sirene/publ/Pfit_88_2.pdf
http://dud.inf.tu-dresden.de/sirene/publ/Pfit_88_2.pdf
http://dud.inf.tu-dresden.de/sirene/publ/Pfit_88_3.pdf
http://dud.inf.tu-dresden.de/sirene/publ/Pfit_88_3.pdf
http://dud.inf.tu-dresden.de/sirene/publ/Pfit_88_4.pdf
http://dud.inf.tu-dresden.de/sirene/publ/Pfit_88_4.pdf
http://dud.inf.tu-dresden.de/sirene/publ/Pfit_88_5.pdf
http://dud.inf.tu-dresden.de/sirene/publ/Pfit_88_5.pdf
http://dud.inf.tu-dresden.de/sirene/publ/Pfit_88_6.pdf
http://www.disco.ethz.ch/alumni/pascal/refs/rn_1975_roberts.pdf
http://www.disco.ethz.ch/alumni/pascal/refs/rn_1975_roberts.pdf
http://eprint.iacr.org/2007/353
http://eprint.iacr.org/2007/353
www.onion-router.net/Publications/SSP-1997.pdf
https://www.torproject.org/ (accessed Mar 17, 2015)
https://www.torproject.org/ (accessed Mar 17, 2015)
http://www.mathnet.ru/php/getFT.phtml?jrnid=ppi&paperid=1558&what=fullt&option_lang=eng
http://www.mathnet.ru/php/getFT.phtml?jrnid=ppi&paperid=1558&what=fullt&option_lang=eng
http://dm.ing.unibs.it/giuzzi/corsi/Support/papers-cryptography/WaPf1_89DiscoEngl.pdf
http://dm.ing.unibs.it/giuzzi/corsi/Support/papers-cryptography/WaPf1_89DiscoEngl.pdf

18 Anna Krasnova, Moritz Neikes, and Peter Schwabe

22. David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron Johnson.
Dissent in numbers: Making strong anonymity scale. In Proceedings of the 10th
USENIX Conference on Operating Systems Design and Implementation, pages 179—
192. USENIX Association, 2012. http://dedis.cs.yale.edu/dissent/papers/
osdil2.pdf. 5

http://dedis.cs.yale.edu/dissent/papers/osdi12.pdf
http://dedis.cs.yale.edu/dissent/papers/osdi12.pdf

Footprint scheduling for Dining-Cryptographer networks 19

A Optimization of Pfitzmann’s algorithm and Chaum’s
reservation map

When Chaum'’s or Pfitzmann’s algorithm is used for scheduling, the number of
available slots has to be chosen appropriate to the size of the network. This
section briefly explains how we optimized the ratio between the number of par-
ticipants and the number of slots.

Assuming that participants choose random slots in the schedule, the colli-
sion probability in both algorithms underlies the birthday paradox. However,
collisions do not need to be avoided at all costs: Pfitzmann’s scheduling algo-
rithm is capable of detecting them, and Chaum’s algorithm should tolerate some
collisions in order to limit the scheduling overhead.

Therefore the number of slots does not need to be quadratic in the number
of participants. In fact, our simulations showed that it is sufficient if there is a
linear relationship between the number of slots and the number of participants.
Let ¢ be the ratio between the number of slots S and the number of participants
P, so that S = i - P. Figure 6 shows the scheduling overhead for Pfitzmann’s
algorithm with different values of 7. Pfitzmann’s algorithm achieves minimal
overhead for i = 32 across various network sizes. Based on these results, the
simulations shown in Section 4 were executed using ¢ = 32.

40
Slots per client
354 4
8
g
830 | 16
24
m— 32
25 — G4

T T T T T
0 2500 5000 7500 10000
Participants

Fig. 6: The average scheduling overhead produced by Pfitzmann’s algorithm for
different numbers of slots per participant.

Chaum’s algorithm cannot detect collisions and therefore needs to minimize
the chance of collisions to occur. Figure 7 shows the fraction of participants that
will experience a collision in their reservation attempt, given different values of .

20 Anna Krasnova, Moritz Neikes, and Peter Schwabe

We aimed for a configuration where no more than one in 20 reservation attempts
would fail, which requires about 32 slots per participant.

The results for Chaum’s algorithm shown in Section 4 were achieved with
i = 32. If a higher success rate is desired, then the number of slots must be

increased more.

0.204
Participants

2015_ 100
o 500
= 1000
50.10
O = 5000

0.054 == 10000

0.00+

T T T

4 8 16 32 64 128
Slots per participant

Fig.7: The fraction of participants that will experience a collision in Chaum’s
reservation map algorithm, for different ratios between the network size and the

number of slots.

Footprint scheduling for Dining-Cryptographer networks 21

B Pseudocode description of footprint scheduling

Algorithm 1 Footprint scheduling from the perspective of one participant A

Parameters: Number of footprint bits B, number of participants N, number of slots
S per message cycle

Output: A vector D € {0, 1}5, indicating for each slot whether it can be used for
sending.

R < log(N)

D« {1}% > Vector indicating which slots can be used for sending
f+ {0,132\ {0}" > Set of possible footprints
F g f5S > Vector holding footprints for each slot
V < SLOTRESERVE(D, F) > First round of the scheduling cycle
for i from 1 to R — 2 do > Rounds 1 to R — 2

for j from 0 to s — 1 do
if D[j] =0 then

continue
end if
if V[j] # F[j] then > Reservation attempt failed
c1 +r[0,1) > Biased coin toss
if ¢1 < 0.7 then
D[jl«+0 > Back off
else
C2 <R {07 1}
if c2 =1 then > Try same slot again
else > Empty slot available?
I+ {§'|D[s'] =0 and V[s'] = 0}
D[j] 0
if I # 0 then > Pick empty slot
s’ «—prl
D[s'] + 1
end if
end if
end if
end if
end for > Generate new footprints
F+pgf3
V < SLOTRESERVE(D, F)
end for
for j from 0 to s — 1 do > Last round
if V[j] # F[j] then
DJj] < 0
end if
end for
F«rf®

SLOTRESERVE(D, F')
return D

22

Anna Krasnova, Moritz Neikes, and Peter Schwabe

Algorithm 2 Procedure for a slot-reservation attempt in footprint scheduling

procedure SLOTRESERVE(D, F')

Va < {{0}7}
for ¢ from 0 to s — 1 do
if D[{] =1 then V4[i] < F7i]
end if
end for
Broadcast V4 through DC-net
Receive V' (xor of all individual scheduling vectors) from DC-net
return V

end procedure

C

Overview of main scheduling methods

Table 2 compares 3 main scheduling methods discussed in this paper with foot-
print scheduling. Some explanations of the compared properties:

Guaranteed sending - indicates if a user is guaranteed to have a slot reserved
after one run of scheduling protocol with no adversaries present.

Equal throughput - indicates if all users are assigned the same amount of
reserved slots or not. Note, that Pfitzmann’s algorithm used for collision
resolution provides equal throughput for all sending users. However, as a
reservation method it does not due to possibility of several users choosing
the same slot number to reserve.

Adopts to load change - indicates if the protocol can adopt to changing
number of active users between two protocol runs to avoid too many empty
slots or too many unsuccessful reservation attempts.

Disconnected users - shows if the protocol can handle users disconnecting
during run of the scheduling protocol. For example, Pfitzmann’s algorithm
would have to completely restart after a user is dropped out.

Collisions - describes how collisions during run of the scheduling protocol
are handled.

Scheduling overhead - demonstrates how much data a single user has to send
in order to reserve a single slot. To simplify estimations, given formulas are
calculated under assumption that there are no collisions and no adversaries
present. In footprint scheduling a user sends BRS amount of data (over
R rounds), that leads to S slot reservation in the ideal case. Thus, for a
single slot reservation, a user has to send BR data. Note, that it differs
from the formula 1 in Section 4 in the assumption that reservation protocol
leads to S successful reservations. According to our performance estimations,
one can use R equal to log(N). In Chaum’s algorithm a user sends once N2
amount data, leading to A slot reservations in ideal case. Thus, the single slot
reservation requires = NTZ. After optimization described in Appendix A the
formula becomes ~ %. Note, optimization comes at the cost of tolerating
collisions during message cycle. In Pfitzmann’s algorithm each can choose

Footprint scheduling for Dining-Cryptographer networks 23

a slot with a number up to IV, however one has to choose a larger modulo
m = N? to avoid undetected collisions when adding up choices of all users.
Thus one needs log(NN?) bits to represent each slot number. To avoid choosing
same slot number, one has to multiply N? with 32 (See Appendix A). In
addition to that, each schedule message is appended with log(N) bits for
counting the number of collided messages. For Dissent protocol we provide
simplified formula that counts only large messages sent through the network.
Hides number of active users - indicates if the protocol allows an external
observer to estimate from the scheduling cycle how many users are going to
send in the DC-net.

Anna Krasnova, Moritz Neikes, and Peter Schwabe

24

suorydLious Lox-orqnd Iojye sosesrout p y3Suol jo 3x0310udid 9Y3 S3Iq JO jUNOWE - [

Surmpoyos juradyooy ur o[o£> Surnpeyos tod SPUNOL FUINPOYDS JO IOQUINU - I

9[04 Surmpeayss oYy} SULINP SISSN DAIJOR JO ISqUINU - |/ {SI9SN JO IoqUINU - A] ‘UOIFEION

o7 SPOYJOW SUINPAYOS UTBUL JO MIIAIIAQ

(opysturydo £10a) uoryewyse poyrdurg

Y S e[NUWLIOY 93 SNY ‘g = g POPUSWIOIDY

g OIq%L

1 olqeL oos sojdwexe [EOISWNU 10,

v xipuaddy eeg ‘pezrwidQ

v xipuaddy eog ‘pezrwrydQ

0 © I~ 0 O O

reuorjejnduwoy)
arqeoridde joN

44 ~

6%95 FQ_\NL&:H\E ~

jooad o8pamouy-o10z ‘Jur
-udts ‘uorpdAious Aoy or[qng

arqissodury

[eUOI}IPUOOU) [euUOI}IPUOOU)

14 ouQ

3 «_V ~
$99S ‘(N)Bo1 + (NTe)bol 1298 ‘NzE N
g < w o[npow uonIppy MOX

UOTYeAIISOI JUSADIJ UOTYCAIISDI JUSADIJ

sjors Aydws jo 10q

AT
[RUOI}IPUOOU)
(N)Bo) =y ‘e1qessnlpy

0998 ‘(N)Bo1 x g

HOX

Aymiq
-eqoxd US3IY [YIIm PaA[OsaYy

SI9ST 9AT)O® JO I9QUUINU SOPTH
Aoearad seAdIyOY
SpUNoOI Jo junowy

¢ PeayIoA0 Surmpatdg
suotjerado pormboy

SUoISI[[0D

s[reJ [000701J s[1e] [000301J -WNU - $9SeaIdU]/Pajosyreu) peresuaduion) SI9SN PajoauUodSI(]
Jopeo] dnoid
Aq uoryein8yuod [enury quateyuU] parewnisy Juatayu] a3uetp peol 01 sydopy
posjurIRNL) - - - ndySnoayy enbyg
+ - - - Surpuoes pesjuerens)
JuesSI(] uuewziyJ 2I0AIqIS] /Wney) qutadjooq Ayredoag

	Footprint scheduling for Dining-Cryptographer networks

