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1 Introduction
We present the digital signature scheme Dilithium, whose security is based on the hardness
of finding short vectors in lattices. Our scheme was designed with the following criteria in
mind:

Simple to implement securely. The most compact lattice-based signature schemes
[DDLL13, DLP14] crucially require the generation of secret randomness from the dis-
crete Gaussian distribution. Generating such samples in a way that is secure against
side-channel attacks is highly non-trivial and can easily lead to insecure implementations, as
demonstrated in [BHLY16, EFGT17, PBY17]. While it may be possible that a very careful
implementation can prevent such attacks, it is unreasonable to assume that a universally-
deployed scheme containing many subtleties will always be expertly implemented. Dilithium
therefore only uses uniform sampling, as was originally proposed in [Lyu09, GLP12, BG14].
Furthermore all other operations (such as polynomial multiplication and rounding) are
easily implemented in constant time.

Be conservative with parameters. Since we are aiming for long-term security, we have
analyzed the applicability of lattice attacks from a very favorable, to the attacker, viewpoint.
In particular, we are considering quantum algorithms that require virtually as much space
as time. Such algorithms are currently unrealistic, and there seem to be serious obstacles in
removing the space requirement, but we are allowing for the possibility that improvements
may occur in the future.

Minimize the size of public key + signature. Since many applications require the
transmission of both the public key and the signature (e.g. certificate chains), we designed
our scheme to minimize the sum of these parameters. Under the restriction that we avoid
(discrete) Gaussian sampling, to the best of our knowledge, Dilithium has the smallest
combination of signature and public key sizes of any lattice-based scheme with the same
security levels.

Be modular – easy to vary security. The two operations that constitute nearly the
entirety of the signing and verification procedures are expansion of an XOF (we use
SHAKE-128 and SHAKE-256), and multiplication in the polynomial ring Zq[X ]/(Xn + 1).
Highly efficient implementations of our algorithm will therefore need to optimize these
operations and make sure that they run in constant time. For all security levels, our
scheme uses the same ring with q = 223 − 213 + 1 and n = 256. Varying security simply
involves doing more/less operations over this ring and doing more/less expansion of the
XOF. In other words, once an optimized implementation is obtained for some security
level, it is almost trivial to obtain an optimized implementation for a higher/lower level.

1.1 Overview of the Basic Approach

The design of the scheme is based on the “Fiat-Shamir with Aborts” approach [Lyu09]
and bears most resemblance to the schemes proposed in [GLP12, BG14]. For readers
who are unfamiliar with the general framework of such signature schemes, we present a
simplified (and less efficient) version of our scheme in Fig. 1. This version is essentially a
slightly modified version of the scheme from [BG14]. We will now go through each of its
components to give the reader an idea of how such schemes work.
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Gen
01 A← Rk×`

q
02 (s1, s2)← S`η × Sk

η

03 t := As1 + s2
04 return (pk = (A, t), sk = (A, t, s1, s2))

Sign(sk,M )
05 z := ⊥
06 while z = ⊥ do
07 y← S`γ1−1
08 w1 := HighBits(Ay, 2γ2)
09 c ∈ B60 := H(M ‖ w1)
10 z := y + cs1
11 if ‖z‖∞ ≥ γ1 − β or ‖LowBits(Ay− cs2, 2γ2)‖∞ ≥ γ2 − β, then z := ⊥
12 return σ = (z, c)

Verify(pk,M , σ = (z, c))
13 w′1 := HighBits(Az− ct, 2γ2)
14 if return J‖z‖∞ < γ1 − βK and Jc = H (M ‖ w′1)K

Figure 1: Template for our signature scheme.

Key Generation. The key generation algorithm generates a k× ` matrix A each of whose
entries is a polynomial in the ring Rq = Zq[X ]/(Xn + 1). As previously mentioned, we will
always have q = 223 − 213 + 1 and n = 256. Afterwards, the algorithm samples random
secret key vectors s1 and s2. Each coefficient of these vectors is an element of Rq with
small coefficients – of size at most η. Finally, the second part of the public key is computed
as t = As1 + s2. All algebraic operations in this scheme are assumed to be over the
polynomial ring Rq.

Signing Procedure. The signing algorithm generates a masking vector of polynomials y
with coefficients less than γ1. The parameter γ1 is set strategically – it is large enough
that the eventual signature does not reveal the secret key (i.e. the signing algorithm is
zero-knowledge), yet small enough so that the signature is not easily forged. The signer
then computes Ay and sets w1 to be the “high-order” bits of the coefficients in this
vector. In particular, every coefficient w in Ay can be written in a canonical way as
w = w1 · 2γ2 + w0 where |w0| ≤ γ2; w1 is then the vector comprising all the w1’s. The
challenge c is then created as the hash of the message and w1. The output c is a polynomial
in Rq with exactly 60 ±1’s and the rest 0’s. The reason for this distribution is that c
has small norm and comes from a domain of size > 2256. The potential signature is then
computed as z = y + cs1.

If z were directly output at this point, then the signature scheme would be insecure
due to the fact that the secret key would be leaked. To avoid the dependency of z on
the secret key, we use rejection sampling. The parameter β is set to be the maximum
possible coefficient of csi . Since c has 60 ±1’s and the maximum coefficient in si is η, it’s
easy to see that β ≤ 60η. If any coefficient of z is larger than γ1 − β, then we reject and
restart the signing procedure. Also, if any coefficient of the low-order bits of Az− ct is
greater than γ2 − β, we restart. The first check is necessary for security, while the second
is necessary for both security and correctness. The while loop in the signing procedure
keeps being repeated until the preceding two conditions are satisfied. The parameters are
set such that the expected number of repetitions is not too high (in our instantiations,
this number is between 4 and 7).
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Verification. The verifier first computes w′1 to be the high-order bits of Az−ct, and then
accepts if all the coefficients of z are less than γ1−β and if c is the hash of the message and
w′1. Let us look at why verification works, in particular as to why HighBits(Az−ct, 2γ2) =
HighBits(Ay, 2γ2). The first thing to notice is that Az− ct = Ay− cs2. So all we really
need to show is that

HighBits(Ay, 2γ2) = HighBits(Ay− cs2, 2γ2). (1)

The reason for this is that a valid signature will have ‖LowBits(Ay− cs2, 2γ2)‖∞ < γ2− β.
And since we know that the coefficients of cs2 are smaller than β, we know that adding
cs2 is not enough to cause any carries by increasing any low-order coefficient to have
magnitude at least γ2. Thus Eq. (1) is true and the signature verifies correctly.

1.2 Dilithium
The basic template in Fig. 1 is rather inefficient, as is. The most glaring (but easily fixed)
inefficiency is that the public key consists of a matrix of k · ` polynomials, which could
have a rather large representation. The obvious fix is to have A generated from some seed
ρ using SHAKE-128, and this is a standard technique. The novelty of Dilithium over the
previous schemes is that we also shrink the size of the public key by a factor of 2.5 at the
expense of increasing the signature by around 150 bytes. For the recommended security
level, the scheme has 2.7KB signatures and 1.5KB public keys.

The main observation for obtaining this very favorable trade-off is that when the verifier
computes w′1 in Line 13, the high-order bits of Az− ct do not depend too much on the
low order bits of t because t is being multiplied by a very low-weight polynomial c. In
our scheme, some low-order bits of t are not included in the public key, and so the verifier
cannot always correctly compute the high-order bits of Az − ct. To make up for this,
the signer includes some “hints” as part of the signature, which are essentially the carries
caused by adding in the product of c with the missing low-order bits of t. With this hint,
the verifier is able to correctly compute w′1.

Additionally, we make our scheme deterministic using the standard technique of adding
a seed to the secret key and using this seed together with the message to produce the
randomness y in Line 07. The recent result of Kiltz et al. [KLS17] showed that the fewer
different signatures the adversary sees for the same messages, the tighter the reduction is
in the quantum random oracle model between the signature scheme and the underlying
hardness assumptions. While it’s not clear as to whether there is an improved quantum
attack for randomized signatures, we suggest the deterministic version as the default option.
Our full scheme in Fig. 4 also makes use of basic optimizations such as pre-hashing the
message M so as to not rehash it with every signing attempt.

Implementation Considerations. The main algebraic operation performed in the scheme
is a multiplication of a matrix A, whose elements are polynomials in Zq[X ]/(X256 + 1)
by a vector of such polynomials. In our recommended parameter setting, A is a 5 × 4
matrix and therefore consists of 20 polynomials. Thus the multiplication Av involves 20
polynomial multiplications. As in most lattice-based schemes that are based on operations
over polynomial rings, we have chosen our ring so that the multiplication operation has
a very efficient implementation via the Number Theoretic Transform (NTT), which is
just a version of FFT that works over the finite field Zq rather than over the complex
numbers. To enable the NTT, we needed to choose a prime q so that the group Z∗q has
an element of order 2n = 512; or equivalently q ≡ 1 (mod 512). If r is such an element,
then X256 + 1 = (X − r)(X − r3) · · · (X − r511) and thus one can equivalently represent
any polynomial a ∈ Zq[X ]/(X256 + 1) in its CRT (Chinese Remainder Theorem) form as
(a(r), a(r3), . . . , a(r2n−1)). The advantage of this representation is that the product of



L. Ducas, E.Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, D. Stehlé 5

two polynomials is coordinate-wise. Therefore the most expensive parts of polynomial
multiplication are the transformations a → â and the inverse â → a – these are the NTT
and inverse NTT operations.

The other major time-consuming operation is the expansion of a seed ρ into the
polynomial matrix A. The matrix A is needed for both signing and verification, therefore
a good implementation of SHAKE-128 is important for the efficiency of the scheme.

For our AVX2 optimized implementation of the NTT we take a different approach
than other fast implementations in that we use integer arithmetic. Although we pack only
4 coefficients into one vector register of 256 bits, which is the same density that is also
used by floating point implementations, we can improve on the multiplication speed by
about a factor of 2. We achieved this speed-up by carefully scheduling the instructions
and interleaving the multiplications and reductions during the NTT so that parts of the
multiplication latencies are hidden.

1.3 Comparisons to Other Post-Quantum Signature Schemes
We now give a brief comparison between our signature scheme and other post-quantum
signature schemes that we are aware of.

1.3.1 Lattice Schemes

Schemes with Smaller Signature Sizes. The lattice-based digital signatures (with se-
curity reductions) that have the smallest signature sizes are [DDLL13, DLP14], which
are based on the NTRU assumption. If one adjusts the parameters of [DDLL13] and
[DLP14] so that the security is comparable to that of Dilithium1, the signature sizes will
be approximately 1.5KB and 1KB respectively (compared to 2.7KB in Dilithium), while
the public key sizes will remain approximately the same as in Dilithium.

The main down-side of [DDLL13, DLP14] is that they intrinsically require the use of
(discrete) Gaussian sampling in order to be efficient, which creates several serious real-world
issues. The first is that it is not straight-forward to construct a constant-time discrete
Gaussian sampler. The second is that mistakes in sampling (discrete) Gaussians are
extremely hard to detect in testing; yet even small deviations from the right distribution
can lead to complete signing key recovery by the adversary. For this reason, we believe
that a universally-used scheme should be very simple to implement in a secure fashion,
and we have thus eschewed using anything other than uniform sampling in Dilithium.

Schemes with (Quantum) Security Reductions from (Ring / Module)-LWE Only. The
security of Dilithium is, in the quantum random oracle model (QROM), tightly based on the
hardness of the standard MLWE and MSIS problems, as well as a “hybrid” SelfTargetMSIS
problem that was defined in [KLS17]. For the latter problem, there is a reduction
MSIS ≤ SelfTargetMSIS in the random oracle model via the forking lemma, but not in the
quantum random oracle model.

One could construct a version of Dilithium whose security is based entirely on the
hardness of Ring-LWE in the QROM, but this scheme would result in a 5X increase in the
public key size and a 2X increase in the signature size [KLS17, Table 1]. Furthermore, we
would not be able to work over a the ring that supports NTT, which would make signing
and verification slower. As we explain in Section 5, the SelfTargetMSIS problem is in fact
the lattice version of a problem upon which tight security proofs of today’s signatures
(e.g. Schnorr) using the Fiat-Shamir transform are based. We therefore believe that this
assumption is a perfectly sound one to make and avoiding it is not worth the significant
cost in speed and output size.

1The security in [DDLL13, DLP14] was not set as conservatively as for Dilithium – in particular, sieving
attacks were not considered.
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1.3.2 Other Post-Quantum Signatures.

Of all the non-lattice post-quantum schemes that we are aware of, Dilithium has the smallest
combination of public key and signature size. There may be scenarios, however, that call
for one of these values to be very small, while not caring too much about the other. If one
would like to minimize the public key size, then hash-based signatures (e.g. [BHH+15]) are
a good option because the public key is less than a hundred bytes. The signature length of
such signatures, on the other hand, is between 30-40KB, and signing time is around 50X
slower than Dilithium. If, on the other hand, one would like to minimize the signature size,
then multivariate schemes (see the various comparisons in [CLP+17]) may be of interest.
The signature sizes in these schemes are less than one hundred bytes and signing time is
noticeably faster. The public keys, on the other hand, are often larger than 100KB.

2 Basic Operations
2.1 Ring Operations
We let R and Rq respectively denote the rings Z[X ]/(Xn + 1) and Zq[X ]/(Xn + 1), for q
an integer. Throughout this document, the value of n will always be 256 and q will be the
prime 8380417 = 223 − 213 + 1. Regular font letters denote elements in R or Rq (which
includes elements in Z and Zq) and bold lower-case letters represent column vectors with
coefficients in R or Rq. By default, all vectors will be column vectors. Bold upper-case
letters are matrices. For a vector v, we denote by vT its transpose. The boolean operator
JstatementK evaluates to 1 if statement is true, and to 0 otherwise.

Modular reductions. For an even (resp. odd) positive integer α, we define r ′ = r mod± α
to be the unique element r ′ in the range −α2 < r ′ ≤ α

2 (resp. −α−1
2 ≤ r ′ ≤ α−1

2 ) such that
r ′ ≡ r mod α. We will sometimes refer to this as a centered reduction modulo q.2 For
any positive integer α, we define r ′ = r mod+α to be the unique element r ′ in the range
0 ≤ r ′ < α such that r ′ ≡ r mod α. When the exact representation is not important, we
simply write r mod α.

Sizes of elements. For an element w ∈ Zq, we write ‖w‖∞ to mean |w mod± q|. We
define the `∞ and `2 norms for w = w0 + w1X + . . .+ wn−1Xn−1 ∈ R:

‖w‖∞ = max
i
‖wi‖∞, ‖w‖ =

√
‖w0‖2

∞ + . . .+ ‖wn−1‖2
∞.

Similarly, for w = (w1, . . . ,wk) ∈ Rk , we define

‖w‖∞ = max
i
‖wi‖∞, ‖w‖ =

√
‖w1‖2 + . . .+ ‖wk‖2.

We will write Sη to denote all elements w ∈ R such that ‖w‖∞ ≤ η.

2.2 NTT domain representation
Our modulus q is chosen such that there exists a 512-th root of unity r modulo q.
Concretely, we always work with r = 1753. This implies that the cyclotomic polynomial
X256 + 1 splits into linear factors X − r i modulo q with i = 1, 3, 5, . . . , 511. By the Chinese
remainder theorem our cyclotomic ring Rq is thus isomorphic to the product of the rings

2We draw the reader’s attention to the fact that for even α, the range includes α/2 but not −α/2. This
is a somewhat less standard choice, but defining things in this way makes some parts of the scheme (in
particular, the bit-packing of the public key) more efficient.
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Zq[X ]/(X − r i) ∼= Zq. In this product of rings it is easy to multiply elements since the
multiplication is pointwise there. The isomorphism

a 7→
(
a(r), a(r3), . . . , a(r511)

)
: Rq →

∏
i
Zq[X ]/(X − r i)

can be computed quickly with the help of the Fast Fourier Transform. Since X256 + 1 =
X256 − r256 = (X128 − r128)(X128 + r128) one can first compute the map

Zq[X ]/(X256 + 1)→ Zq[X ]/(X128 − r128)× Zq[X ]/(X128 + r128)

and then continue separately with the two reduced polynomials of degree less than
128 noting that X128 + r128 = X128 − r384. The Fast Fourier Transform is also called
Number Theory Transform (NTT) in this case where the ground field is a finite field.
Natural fast NTT implementations do not output vectors with coefficients in the order
a(r), a(r3), . . . , a(r511). Therefore we define the NTT domain representation â = NTT(a) ∈
Z256

q of a polynomial a ∈ Rq to have coefficients in the order as output by our reference
NTT. Concretely,

â = NTT(a) = (a(r0), a(−r0), . . . , a(r127), a(−r127))

where ri = rbrv(128+i) with brv(k) the bitreversal of the 8 bit number k. With this notation,
and because of the isomorphism property, we have ab = NTT−1(NTT(a)NTT(b)). For vectors
y and matrices A, the representations ŷ = NTT(y) and Â = NTT(A) mean that every
polynomial yi and ai,j comprising y and A is in NTT domain representation. We give
further detail about our NTT implementations in Section 4.5.

2.3 Hashing
Our scheme uses several different algorithms that hash strings in {0, 1}∗ onto domains of
various forms. Below we give the high level descriptions of these functions and defer the
details of how exactly they are used in the signature scheme to Section 4.2.

Hashing to a Ball. Let Bh denote the set of elements of R that have h coefficients that
are either −1 or 1 and the rest are 0. We have |Bh| = 2h ·

(n
h
)
. For our signature scheme,

we will need a cryptographic hash function that hashes onto B60 (which has more than
2256 elements). The algorithm we will use to create a random element in B60 is sometimes
referred to as an “inside-out” version of the Fisher-Yates shuffle [Knu97], and its high-level
description is in Fig. 2.3

SampleInBall
01 Initialize c = c0c1 . . . c255 = 00 . . . 0
02 for i := 196 to 255
03 j ← {0, 1, . . . , i}
04 s ← {0, 1}
05 ci := cj
06 cj := (−1)s

07 return c

Figure 2: Create a random 256-element array with 60 ±1’s and 196 0′s

3Normally, the algorithm should begin at i = 0, but since there are 196 0’s, the first 195 iterations
would just be setting components of c to 0.
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Expanding the Matrix A. The function ExpandA maps a uniform seed ρ ∈ {0, 1}256 to
a matrix A ∈ Rk×l

q in NTT domain representation. The matrix A is only needed for
multiplication. Hence, for the sake of faster implementations, the expansion function
ExpandA does not output A ∈ Rk×l

q = (Zq[X ]/(X256 +1))k×l . Instead it outputs Â ∈ Z256
q ,

which is interpreted as the NTT domain representation of A. As A needs to be sampled
uniformly and the NTT is an isomorphism, ExpandA also needs to sample uniformly
in this representation. To be compatible to Dilithium, an implementation whose NTT
produces differently ordered vectors than our reference NTT needs to sample coefficients
in a non-consecutive order.

Sampling the vectors y. The function ExpandMask, used for deterministically generating
the randomness of the signature scheme, maps K ‖ µ ‖ κ to y ∈ S l

γ1−1.

Collision resistant hash. The function CRH used in our signature scheme is a collision
resistant hash function mapping to {0, 1}384.

2.4 High/Low Order Bits and Hints
To reduce the size of the public key, we will need some simple algorithms that extract
“higher-order” and “lower-order” bits of elements in Zq. The goal is that when given an
arbitrary element r ∈ Zq and another small element z ∈ Zq, we would like to be able to
recover the higher order bits of r + z without needing to store z. We therefore define
algorithms that take r , z and produce a 1-bit hint h that allows one to compute the higher
order bits of r + z just using r and h. This hint is essentially the “carry” caused by z in
the addition.

There are two different ways in which we will break up elements in Zq into their “high-
order” bits and “low-order” bits. The first algorithm, Power2Roundq, is the straightforward
bit-wise way to break up an element r = r1 · 2d + r0 where r0 = r mod± 2d and r1 =
(r − r0)/2d .

Notice that if we choose the representatives of r1 to be non-negative integers between 0
and bq/2dc, then the distance (modulo q) between any two r1 · 2d and r ′1 · 2d is usually
≥ 2d , except for the border case. In particular, the distance modulo q between bq/2dc · 2d

and 0 could be very small. This is problematic in the case that we would like to produce a
1-bit hint, as adding a small number to r can actually cause the high-order bits of r to
change by more than 1.

We avoid having the high-order bits change by more than 1 with a simple tweak. We
select an α that is a divisor of q − 1 and write r = r1 · α+ r0 in the same way as before.
For the sake of simplicity, we assume that α is even (which is possible, as q is odd). The
possible r1 · α’s are now {0, α, 2α, . . . , q − 1}. Note that the distance between q − 1 and
0 is 1, and so we remove q − 1 from the set of possible r1 · α’s, and simply round the
corresponding r ’s to 0. Because q − 1 and 0 differ by 1, all this does is possibly increase
the magnitude of the remainder r0 by 1. This procedure is called Decomposeq. Using
this procedure as a sub-routine, we can define the MakeHintq and UseHintq routines that
produce a hint and, respectively, use the hint to recover the high-order bits of the sum.
For notational convenience, we also define HighBitsq and LowBitsq routines that simply
extract r1 and r0, respectively, from the output of Decomposeq.

The below Lemmas state the crucial properties of these supporting algorithms that are
necessary for the correctness and security of our scheme. Their proofs can be found in
Appendix A.

Lemma 1. Suppose that q and α are positive integers satisfying q > 2α, q ≡ 1 (mod α)
and α even. Let r and z be vectors of elements in Rq where ‖z‖∞ ≤ α/2, and let h,h′
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Power2Roundq(r , d)
08 r := r mod+ q
09 r0 := r mod± 2d

10 return
(
(r − r0)/2d , r0

)
MakeHintq(z, r , α)
11 r1 := HighBitsq(r , α)
12 v1 := HighBitsq(r + z, α)
13 return Jr1 6= v1K

UseHintq(h, r , α)
14 m := (q − 1)/α
15 (r1, r0) := Decomposeq(r , α)
16 if h = 1 and r0 > 0 return (r1 + 1) mod+ m
17 if h = 1 and r0 ≤ 0 return (r1 − 1) mod+ m
18 return r1

Decomposeq(r , α)
19 r := r mod+ q
20 r0 := r mod± α
21 if r − r0 = q − 1
22 then r1 := 0; r0 := r0 − 1
23 else r1 := (r − r0)/α
24 return (r1, r0)

HighBitsq(r , α)
25 (r1, r0) := Decomposeq(r , α)
26 return r1

LowBitsq(r , α)
27 (r1, r0) := Decomposeq(r , α)
28 return r0

Figure 3: Supporting algorithms for Dilithium.

be vectors of bits. Then the HighBitsq, MakeHintq, and UseHintq algorithms satisfy the
following properties:

1. UseHintq(MakeHintq(z, r, α), r, α) = HighBitsq(r + z, α).

2. Let v1 = UseHintq(h, r, α). Then ‖r−v1 ·α‖∞ ≤ α+ 1. Furthermore, if the number
of 1’s in h is ω, then all except at most ω coefficients of r−v1 ·α will have magnitude
at most α/2 after centered reduction modulo q.

3. For any h,h′, if UseHintq(h, r, α) = UseHintq(h′, r, α), then h = h′.

Lemma 2. If ‖s‖∞ ≤ β and ‖LowBitsq(r, α)‖∞ < α/2− β, then

HighBitsq(r, α) = HighBitsq(r + s, α).

3 Signature
The Key Generation, Signing, and Verification algorithms for our signature scheme are
presented in Fig. 4. We present the deterministic version of the scheme in which the rand-
omness used in the signing procedure is generated (using SHAKE-256) as a deterministic
function of the message and a small secret key. Since our signing procedure may need to
be repeated several times until a signature is produced, we also append a counter in order
to make the SHAKE-256 output differ with each signing attempt of the same message.
Also due to the fact that each message may require several iterations to sign, we compute
an initial digest of the message using a collision-resistant hash function, and use this digest
in place of the message throughout the signing procedure.

As discussed in Section 1.2, the main design improvement of Dilithium over the scheme
in Fig. 1 is that the public key size is reduced by a factor of around 2.5 at the expense of
an additional hundred bytes in the signature. To accomplish the size reduction, the key
generation algorithm outputs t1 := Power2Roundq(t, d) as the public key instead of t as
in Fig. 1. This means that instead of dlog qe bits per coefficient, the public key requires
dlog qe − d bits. In our instantiation, q ≈ 223 and d = 14, which means that instead of 23
bits in each public key coefficient, there are instead 9.
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The main problem with not having the entire t in the public key is that the verification
algorithm is no longer able to exactly compute w′1 in Line 13 in Fig. 1. In order to do this,
the verification algorithm will need the high order bits of Az− ct, but it can only compute
Az− ct1 · 2d = Az− ct + ct0. But since the product ct0 consists of only small numbers,
and we only care about the high order bits, we really only need to know the carries that
each coefficient of ct0 causes. These are the carries that the signer sends as a hint to the
verifier. Heuristically, based on our parameter choices, there should not be more than ω
positions in which a carry is caused. The signer therefore simply sends the positions in
which these carries occur (this is the extra bytes in the signature), which allows the verifier
to compute the high order bits of Az− ct.

3.1 Implementation Notes and Efficiency Trade-offs
To keep the size of the public (and secret) key small, both the Sign and Verify procedures
begin with extracting the matrix A (or more accurately, its NTT domain representation
Â) from the seed ρ. If storage space is not a factor, then Â can be pre-computed and be
part of the secret/public key. The signer can additionally pre-compute the NTT domain
representations of s1, s2, t0 to slightly speed up the signing operation. At the other extreme,
if the signer wants to store as small a secret key as possible, he only needs to store ρ and
K , and the random seed used to create s1, s2 in the key generation algorithm. All the
other parts of the secret key can be recreated from these. Furthermore, one can also keep
the memory for intermediate computations low by only keeping the parts of the NTT
domain representation that one is currently working with.

Another possible change is to remove the strict deterministic nature of the digital
signature. One may want to consider this option due to the recent side-channel attacks
that exploit determinism [SBB+17, PSS+17]. An easy way in which to give an option of
using randomized signatures is to allow the appending of some system randomness to the
input of ExpandMask when generating y. As we mentioned earlier, the security proof for
Dilithium is “tight” according to [KLS17] for deterministic signatures and the bound gets
gradually looser the more different signatures are seen per message. We therefore still
recommend using deterministic signatures except in environments that may be vulnerable
to the aforementioned side-channel attacks.

3.2 Correctness
In this section, we prove the correctness of the signature scheme.

If ‖ct0‖∞ < γ2, then by Lemma 1 we know that

UseHintq(h,w− cs2 + ct0, 2γ2) = HighBitsq(w− cs2, 2γ2) .

Since w = Ay and t = As1 + s2, we have that

w− cs2 = Ay− cs2 = A(z− cs1)− cs2 = Az− ct, (2)

and w− cs2 + ct0 = Az− ct1 · 2d . Therefore the verifier computes

UseHintq(h,Az− ct1 · 2d , 2γ2) = HighBitsq(w− cs2, 2γ2) .

Furthermore, because the signer also checks in Line 19 that r1 = w1, this is equivalent
to

HighBitsq(w− cs2, 2γ2) = HighBitsq(w, 2γ2). (3)

Therefore, the w1 computed by the verifier is the same as that of the signer, and the
verification procedure will always accept.
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Gen
01 ρ← {0, 1}256

02 K ← {0, 1}256

03 (s1, s2)← S`η × Sk
η

04 A ∈ Rk×`
q := ExpandA(ρ) B A is generated and stored in NTT Representation as Â

05 t := As1 + s2 B Compute As1 as NTT−1(Â · NTT(s1))
06 (t1, t0) := Power2Roundq(t, d)
07 tr ∈ {0, 1}384 := CRH(ρ ‖ t1)
08 return (pk = (ρ, t1), sk = (ρ,K , tr , s1, s2, t0))

Sign(sk,M )
09 A ∈ Rk×`

q := ExpandA(ρ) B A is generated and stored in NTT Representation as Â
10 µ ∈ {0, 1}384 := CRH(tr ‖ M )
11 κ := 0, (z,h) := ⊥
12 while (z,h) = ⊥ do B Pre-compute ŝ1 := NTT(s1), ŝ2 := NTT(s2), and t̂0 := NTT(t0)
13 y ∈ S`γ1−1 := ExpandMask(K ‖ µ ‖ κ)
14 w := Ay B w := NTT−1(Â · NTT(y))
15 w1 := HighBitsq(w, 2γ2)
16 c ∈ B60 := H(µ ‖ w1) B Store c in NTT representation as ĉ = NTT(c)
17 z := y + cs1 B Compute cs1 as NTT−1(ĉ · ŝ1)
18 (r1, r0) := Decomposeq(w− cs2, 2γ2) B Compute cs2 as NTT−1(ĉ · ŝ2)
19 if ‖z‖∞ ≥ γ1 − β or ‖r0‖∞ ≥ γ2 − β or r1 6= w1, then (z,h) := ⊥
20 else
21 h := MakeHintq(−ct0,w− cs2 + ct0, 2γ2) B Compute ct0 as NTT−1(ĉ · t̂0)
22 if ‖ct0‖∞ ≥ γ2 or the # of 1’s in h is greater than ω, then (z,h) := ⊥
23 κ := κ+ 1
24 return σ = (z,h, c)

Verify(pk,M , σ = (z,h, c))
25 A ∈ Rk×`

q := ExpandA(ρ) B A is generated and stored in NTT Representation as Â
26 µ ∈ {0, 1}384 := CRH(CRH(ρ ‖ t1) ‖ M )
27 w′1 := UseHintq(h,Az− ct1 · 2d , 2γ2) B Compute as NTT−1(Â · NTT(z)− NTT(c) · NTT(t1 · 2d))
28 return J‖z‖∞ < γ1 − βK and Jc = H (µ ‖ w′1)K and J# of 1’s in h is ≤ ωK

Figure 4: The signature scheme Dilithium.

3.3 Number of Iterations
We now want to compute the probability that Step 19 will set (z,h) to ⊥. The probability
that ‖z‖∞ < γ1 − β can be computed by considering each coefficient separately. For
each coefficient σ of cs1, the corresponding coefficient of z will be between −γ1 + β + 1
and γ1 − β − 1 (inclusively) whenever the corresponding coefficient of yi is between
−γ1 + β + 1 − σ and γ1 − β − 1 − σ. The size of this range is 2(γ1 − β) − 1, and the
coefficients of y have 2γ1 − 1 possibilities. Thus the probability that every coefficient of y
is in the good range is(

2(γ1 − β)− 1
2γ1 − 1

)256·`
=
(

1− β

γ1 − 1/2

)`n
≈ e−256·β`/γ1 , (4)

where we used the fact that our values of γ1 are large compared to 1/2.
We now move to computing the probability that we have

‖r0‖∞ = ‖LowBitsq(w− cs2, 2γ2)‖∞ < γ2 − β .

If we (heuristically) assume that the low order bits are uniformly distributed modulo 2γ2,
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Table 1: Parameters for Dilithium. The formulas for the sizes of the public key and
signature are given in Section 4.3. The explanations for the NIST security levels is in
Section 5.3.

I II III IV
weak medium recommended very high

q 8380417 8380417 8380417 8380417
d 14 14 14 14

weight of c 60 60 60 60
γ1 = (q − 1)/16 523776 523776 523776 523776
γ2 = γ1/2 261888 261888 261888 261888

(k, `) (3, 2) (4, 3) (5, 4) (6, 5)
η 7 6 5 3
β 375 325 275 175
ω 64 80 96 120

pk size (bytes) 896 1184 1472 1760
sig size (bytes) 1487 2044 2701 3366

Exp. reps (from Eq. (5)) 4.3 5.9 6.6 4.3

BKZ block-size b to break SIS 235 355 475 605
Best Known Classical bit-cost 68 103 138 176
Best Known Quantum bit-cost 62 94 125 160
BKZ block-size b to break LWE 200 340 485 595
Best Known Classical bit-cost 58 100 141 174
Best Known Quantum bit-cost 53 91 128 158

NIST Security Level - 1 2 3

Gen cycles (Haswell) 169, 972 269, 844 382, 756 512, 116
Sign cycles (Haswell) 765, 442 1, 285, 476 1, 817, 902 1, 677, 782

Verify cycles (Haswell) 196, 048 296, 920 395, 936 548, 558
Gen cycles (AVX2, Haswell) 104, 128 156, 432 225, 432 292, 404
Sign cycles (AVX2, Haswell) 338, 922 493, 332 673, 144 711, 018

Verify cycles (AVX2, Haswell) 105, 584 150, 228 207, 164 288, 398

then there is a (
2(γ2 − β)− 1

2γ2

)256·k
≈ e−256·βk/γ2

probability that all the coefficients are in the good range (using the fact that our values
of β are large compared to 1/2).

As we already mentioned, if ‖cs2‖∞ ≤ β, then ‖r0‖∞ < γ2 − β implies that r1 = w1.
Thus the last check should succeed with overwhelming probability when the previous check
passed. Therefore, the probability that Step 19 passes is

≈ e−256·β(`/γ1+k/γ2) . (5)

It is more difficult to formally compute the probability that Step 22 results in a restart.
The parameters were set such that heuristically (z,h) = ⊥ with probability less than 1%.
Therefore the vast majority of the loop repetitions will be caused by Step 19.
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4 Implementation Details
4.1 Bit-packing
We now describe how we encode vectors as byte strings. This is needed for absorbing
them into SHAKE and defining the data layout of the keys and signature. To reduce
the computation time spent on SHAKE and the sizes of keys and signatures, we use
bit-packing.

We start with the vector w1 that, together with µ, is hashed to a ball. It consists
of k polynomials w1,1, . . . ,w1,k in Rq with coefficients that are roundings of elements in
Zq with respect to α = 2γ2. It follows that the coefficients lie in {0, . . . , 15} and can be
represented by 4 bits each. This allows w1 to be packed in a string of k · 256 · 4/8 = k · 128
bytes. Each byte encodes two consecutive coefficients of a polynomial w1,i in its low 4 bits
and high 4 bits, respectively. See Figure 5 for an explanation of the exact bit packing.

…
c1 c2 c3 c4 c5 c6

Byte 1 Byte 2 Byte 3

Figure 5: Bit-packing w1. The k polynomials comprising w1 are w1,1, . . . ,w1,k and we let
c1, . . . , c256 be the coefficients of w1,1 (with the lower powers first), c257, . . . , c512 be the
coefficients of w1,2, etc.

Next we turn to the vector t1, which is the power-of-two rounding of t. Note that
q− 1 = 223− 213 = (29− 1)214 + 213 which shows that the coefficients of the k polynomials
of t1 lie in {0, . . . , 29−1} and can be represented by 9 bits each. These 9 bits per coefficient,
in little-endian byte-order, are bit-packed. In total t1 needs k · 256 · 9/8 = 288k bytes. See
Figure 6 for an explanation of the exact bit packing.

…
c1

Byte 1 Byte 2 Byte 3

c2 c3

Figure 6: Bit-packing t1. The k polynomials comprising t1 are t1,1, . . . , t1,k and we let
c1, . . . , c256 be the coefficients of t1,1 (with the lower powers first), c257, . . . , c512 be the
coefficients of t1,2, etc.

The coefficients of the polynomials of t0 can be written in the form q + 213 − v with
v ∈ {0, . . . , 214 − 1}. These v in little endian byte-order are bit-packed. This results in
256 · 14/8 bytes per polynomial and k · 256 · 14/8 = 448k bytes for t0. See Figure 7 for an
explanation of the exact bit packing.

The polynomials in s1 and s2 have coefficients with infinity norm at most η. So every
coefficient of these polynomials is equivalent modulo q to η−c with some c ∈ {0, . . . , 2η}. In
the bit packing the values for c are stored so that each polynomial needs 256dlog 2η + 1e/8
bytes. This amounts to 256 · 4/8 = 128 bytes for the weak, medium and recommended
security levels, and 256 · 3/8 = 96 bytes for the very high security level. The bit-packing is
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…
c1

Byte 1 Byte 2 Byte 3

c2

Figure 7: Bit-packing t0. The k polynomials comprising t0 are t0,1, . . . , t0,k and we let
c1, . . . , c256 be the coefficients of t0,1 (with the lower powers first), c257, . . . , c512 be the
coefficients of t0,2, etc.

done similarly to the case of w1, t1 and t0. See Figure 8 for an explanation of the exact
bit packing.

…
c1 c2 c3 c4 c5 c6

Byte 1 Byte 2 Byte 3

Figure 8: Bit-packing si . The ` polynomials comprising s1 are s1,1, . . . , s1,` and we let
η−c1, . . . , η−c256 be the coefficients of s1,1 (with the lower powers first), η−c257, . . . , η−c512
be the coefficients of s1,2, etc. where ci ∈ {0, . . . , 2η}. The k polynomials comprising s2 are
s2,1, . . . , s2,` and we let η− c1, . . . , η− c256 be the coefficients of s2,1 (with the lower powers
first), c257, . . . , c512 be the coefficients of s2,2, etc. ci ∈ {0, . . . , 2η}. The above picture is
for parameter sets where ci requires four bits per coefficient (i.e. when 4 ≤ η ≤ 15). When
η < 4, one would only use three bits per coefficient and pack in the obvious manner.

Finally, z contains polynomials whose coefficients are equivalent modulo q to γ1− 1− c
with c ∈ {0, . . . , 2γ1 − 2} and these values c are bit packed. Since dlog 2γ1 − 1e = 20,
bit-packing z requires l · 256 · 20/8 = 640l bytes and blocks of 2 coefficients are stored in 5
consecutive bytes. See Figure 9 for an explanation of the exact bit packing.

…
c1

Byte 1 Byte 2 Byte 3

…

Figure 9: Bit-packing z. The ` polynomials comprising z are z1, . . . , z` and we let
γ1 − 1 − c1, . . . , γ1 − 1 − c256 be the coefficients of z1 (with the lower powers first),
γ1 − 1− c257, . . . , γ1 − 1− c512 be the coefficients of z2, etc.

4.2 Hashing
Hashing to a Ball. We now precisely specify the operation of the function H : µ ‖ w1 7→
c ∈ B60 described in Fig. 2 as it is used in our signature scheme. H absorbs the 48 bytes
of µ immediately followed by the 128k bytes for the bit-packed representation of w1 into
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SHAKE-256. Throughout its operations the function squeezes SHAKE-256 in order to
obtain a stream of random bytes of variable length. The first 60 bits in the first 8 bytes of
this random stream are interpreted as 60 random sign bits si ∈ {0, 1}, i = 0, . . . , 59. The
remaining 4 bits are discarded. Then H uses Algorithm 2 to compute c. In each iteration
of the for loop it uses rejection sampling on elements from {0, . . . , 255} until it gets a
j ∈ {0, . . . , i}. An element in {0, . . . , 255} is obtained by interpreting the next byte of the
random stream from SHAKE-256 as a number in this set. For the sign s the corresponding
si−196 is used.

Expanding the Matrix A. The function ExpandA maps a uniform seed ρ ∈ {0, 1}256 to
a matrix A ∈ Rk×l

q in NTT domain representation. It computes each coefficient âi,j ∈ Rq

of Â separately. For the coefficient âi,j it absorbs the 32 bytes of ρ immediately followed
by one byte representing 0 ≤ 24 · j + i < 255 into SHAKE-128. Next it uses consecutive
blocks of 3 bytes of the variable-length output string in order to obtain a sequence of
integers between 0 and 223 − 1. This is done by setting the highest bit of the third
byte in each block to zero and interpreting the blocks in little endian byte order. So
for example the three bytes b0, b1 and b2 from SHAKE-128 are used to get the integer
0 ≤ b′2 · 216 + b1 · 28 + b0 ≤ 223 − 1 where b′2 is the logical AND of b2 and 2128 − 1. Finally,
ExpandA performs rejection sampling on these 23-bit integers to sample the 256 coefficients
ai,j(r0), ai,j(−r0), . . . , ai,j(r127)ai,j(−r127) of âi,j uniformly from the set {0, . . . , q − 1} in
the order of our NTT domain representation.

Sampling the vectors y. The function ExpandMask maps K ‖ µ ‖ κ to y ∈ S l
γ1−1,

where κ ≥ 0, and works as follows. It computes each of the l coefficients of y, which are
polynomials in Sγ1−1, independently. For the i-th polynomial, 0 ≤ i < l, it absorbs the
48 bytes of µ concatenated with the 32 bytes of K and two bytes representing κ + i in
little endian byte order into SHAKE-256. Then each block of 5 consecutive output bytes
is used to get two 20 bit integers between 0 and 220 − 1. For this the first two bytes of
each output block together with a third byte having as lower 4 bits the lower 4 bits of
the third output byte and 4 high zero bits is interpreted in little endian order. Then the
high 4 bits of the third output byte followed by the 16 bits of the fourth and and fifth
byte are interpreted as the second 20 bit integer. As an example assume we have received
the five bytes b0, . . . , b4 from SHAKE-128. Then ExpandMask computes the two integers
0 ≤ b′2 · 216 + b1 · 28 + b0 ≤ 220 − 1 and 0 ≤ b4 · 212 + b3 · 24 + b′′2 ≤ 220 − 1 where b′2 is the
AND of b2 and 15 and b′2 = bb2/16c. On the resulting sequence of 20 bit integers rejection
sampling is performed to get 256 values vj ∈ {0, . . . , 2γ1 − 2}. From these the polynomial
coefficients are computed in increasing order as q + γ1 − 1− vj .

Collision resistant hash. The function CRH in Figure 4 is a collision resistant hash
function. For this purpose 384 bits of the output of SHAKE-256 are used. CRH is called
with two different sets of inputs. First it is called with ρ ‖ t1. The function then absorbs
the 32 bytes of ρ followed by the k · 256 · 9/8 bytes for the bit-packed representation of t1
into SHAKE-256 and takes the first 48 bytes of the first output block of SHAKE-256 as
the output hash. The second input is µ ‖ M . Here the concatenation of the hash µ and
the message string are absorbed into SHAKE-256 and the first 48 output bytes are used
as the resulting hash.

4.3 Data layout of keys and signature
Public key. The public key, containing ρ and t1, is stored as the concatenation of the
bit-packed representations of ρ and t1 in this order. Therefore, it has a size of 32 + 288k
bytes.
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Secret key. The secret key contains ρ, K , tr , s1, s2 and t0 and is also stored as the
concatenation of the bit-packed representation of these quantities in the given order.
Consequently, a secret key requires 64 + 48 + 32((k + l) · dlog 2η + 1e+ 14k) bytes. For the
weak, medium and high security level this is equal to 112 + 576k + 128l bytes. With the
very high security parameters one needs 112 + 544k + 96l = 3856 bytes.

Signature. The signature byte string is the concatenation of a bit packed representation
of z and encodings of h and c in this order. We describe the encoding of h, which needs
ω + k bytes. Together all the polynomials in the vector h have at most ω non-zero
coefficients. It is sufficient to store the locations of these non-zero coefficients. Each of the
first ω bytes of the byte string representing h is the index i of the next non-zero coefficient
in its polynomial, i.e. 0 ≤ i ≤ 255, or zero if there are no more non-zero coefficients. The
bytes numbers ω up to ω + k − 1 record the k positions j of the polynomial boundaries in
the string of ω coefficient indices, where 0 ≤ j ≤ ω. In the encoding of the challenge c,
the first 256 bits are 0 or 1 when the corresponding coefficient of c is zero or non-zero,
respectively. The next 60 bits are 0 or 1 if the corresponding non-zero coefficient is 1 or
−1, respectively. Note that there are precisely 60 non-zero coefficients. The 4 bits up to
the next byte boundary are zero.

Therefore, a signature requires 640l + ω + k + 40 bytes.

4.4 Constant time implementation
Our reference implementation does not branch depending on secret data and does not access
memory locations that depend on secret data. For the modular reductions that are needed
for the arithmetic in Rq we never use the ’%’ operator of the C programming language.
Instead we use Montgomery reductions without the correction steps and special reduction
routines that are specific to our modulus q. For computing the rounding functions described
in Section 2.4, we have implemented branching-free algorithms. On the other hand, when
it is safe to reveal information, we have not tried to make the code constant-time. This
includes the computation of the challenges and the rejection conditions in the signing
algorithm. When performing rejection sampling, our code reveals which of the conditions
was the reason for the rejection, and in case of the norm checks, which coefficient violated
the bound. This is safe since the rejection probabilities for each coefficient are independent
of secret data. The challenges reveal information about CRH(µ ‖ w1) also in the case of
rejected y, but this does not reveal any information about the secret key when CRH is
modeled as a random oracle and w1 has high min-entropy.

4.5 Reference implementation
Our reference NTT is a natural iterative implementation for 32 bit unsigned integers that
uses Cooley-Tukey butterflies in the forward transform and Gentleman-Sande butterflies in
the inverse transform. For modular reductions after multiplying with a precomputed root
of unity we use the Montgomery algorithm as was already done before in e.g. [ADPS16].
In order that the reduced values are correct representatives, the precomputed roots contain
the Montgomery factor 232 mod q. We also use Montgomery reductions after the pointwise
product of the polynomials in the NTT domain representations. Since we cannot get the
Montgomery factor in at this point, these products are in fact Hensel remainders r ′ ≡ r232

(mod q). We then make use of the fact that the NTT transform is linear and multiply by
an additional Montgomery factor after the inverse NTT when we divide out the factor 256.

The implementations of the functions ExpandA and ExpandMask initially squeeze a
number of output blocks of SHAKE-256 and SHAKE-128 that gives enough randomness
with high probability. In the case of ExpandA, which samples uniform polynomials and
hence needs at least 3 · 256 = 768 random bytes per polynomial, 5 blocks from SHAKE-128
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of 168 bytes each are needed at least for one polynomial. They suffice with probability
greater than 1−2−132. ExpandMask initially retrieves 5 blocks from SHAKE-256 that have
136 bytes. This is the minimum number of blocks and suffices with probability greater
than 1− 2−81.

As mentioned in the introduction our reference implementation is protected against
timing attacks. For this reason the centralized remainders in the rounding functions given
in Figure 3 are not computed with branchings. Instead we use the following well-known
trick to compute the centralized remainder r ′ = r mod± α where 0 ≤ r < q. Subtracting
α/2 + 1 from r yields a negative result if and only if r ≤ α/2. Therefore, shifting this
result arithmetically to the right by 31 bits gives −1, i.e. the integer with all bits equal to
1, if r ≤ α/2 and 0 otherwise. Then the logical AND of the shifted value and α is added
to r and α/2 − 1 subtracted. This results in r − α if r > α and r if r ≤ α/2, i.e. the
centralized remainder.

We make heavy use of lazy reduction in our implementation. In the NTT we do not
reduce the results of additions and subtractions at all. For rounding and norm checking
it is important to map to standard representatives. This freezing of the coefficients is
achieved in constant-time by conditionally subtracting q with another instance of the
arithmetic right shift trick.

4.6 AVX2 optimized implementation
We have written an optimized implementation of Dilithium for CPUs that support the
AVX2 instruction set. Since the two most time-consuming operations are polynomial
multiplication and the expansion of the matrix and vectors, the optimized implementation
speeds up these two operations.

For polynomial multiplication, we use a vectorized version of the NTT. This NTT
achieves a full multiplication of two polynomials including three NTTs and the pointwise
multiplication in less than 5000 Haswell cycles and is about a factor of 4.5 faster than the
reference C code compiled using gcc with full machine-specific optimizations turned on.
Contrary to some other implementations (e.g. [ADPS16]), we do not use floating point
instructions. When using floating point instructions, modular reductions are easily done by
multiplying with a floating point inverse of q and rounding to get the quotient from which
the remainder can be computed with another multiplication and a subtraction. Instead
of this approach we use integer instructions only and the same Montgomery reduction
methodology as in the reference C code. When compared to the floating point NTT from
[ADPS16] applied to the Dilithium prime q = 223 − 213 + 1, our integer NTT is about two
times faster.

At any time our AVX2 optimized NTT has 32 unsigned integer coefficients, of 32 bits
each, loaded into 8 AVX2 vector registers. Each of these vector registers then contains
4 extended 64 bit coefficients. So after three levels of NTT the reduced polynomials fit
completely into these 8 registers and we can transform them to linear factors without
further loads and stores. In the second to last and last level the polynomials have degree
less than 4. This means that every polynomial fits into one register but only half of
the coefficients need to be multiplied by roots. For this reason we shuffle the vectors in
order to group together coefficients that need to be multiplied. The instruction that we
use for this task are perm2i128 in the second last level and a combination of vpshufd
and vpblendd in the last level. The multiplications with the constant roots of unity are
performed using the vpmuludq instruction. This instruction computes a full 64 bit product
of two 32 bit integers. It has a latency of 5 cycles on both Haswell and Skylake. In each
level of the NTT half of the coefficients need to be multiplied. Therefore we can do four
vector multiplications and Montgomery reductions in parallel. This hides some of the
latency of the multiplication instructions.

For faster matrix and vector expansion, we use a vectorized SHAKE implementation
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that operates on 4 parallel sponges and hence can absorb and squeeze blocks in and out of
these 4 sponges at the same time. For sampling this means that up to four coefficients can
be sampled simultaneously.

4.7 Computational Efficiency
We have performed timing experiments with our reference implementation on a Haswell
CPU. The results are presented in Table 1. They include the number of CPU cycles needed
by the three operations key generation, signing and signature verification. These numbers
are the medians of 10000 operations each. Signing was performed with a message size
of 32 bytes. The computer we have used is equipped with an Intel Core i7-4770K CPU
running at the constant clock frequency of 3500 Mhz. Hyperthreading and Turbo Boost
are switched off. The system runs Debian stable with Linux Kernel version 3.16.0 and the
code was compiled with gcc 6.3.0.

5 Security Reductions
The standard security notion for digital signatures is UF-CMA security, which is security
under chosen message attacks. In this security model, the adversary gets the public key and
has access to a signing oracle to sign messages of his choice. The adversary’s goal is to come
up with a valid signature of a new message. A slightly stronger security requirement that
is sometimes useful is SUF-CMA (Strong Unforgeability under Chosen Message Attacks),
which also allows the adversary to win by producing a different signature of a message
that he has already seen.

It can be shown that in the (classical) random oracle model, Dilithium is SUF-CMA
secure based on the hardness of the standard MLWE and MSIS lattice problems. The
reduction, however, is not tight. Furthermore, since we also care about quantum attackers,
we need to consider the security of the scheme when the adversary can query the hash
function on a superposition of inputs (i.e. security in the quantum random oracle model –
QROM). Since the classical security proof uses the “forking lemma” (which is essentially
rewinding), the reduction does not transfer over to the quantum setting.

There are no counter-examples of schemes whose security is actually affected by the
non-tightness of the reduction. For example, schemes like Schnorr signatures [Sch89], GQ
signatures [GQ88], etc. all set their parameters ignoring the non-tightness of the reduction.
Furthermore, the only known uses of the additional power of quantum algorithms against
schemes whose security is based on quantum-resistant problems under a classical reduction
involve “Grover-type” algorithms that improve exhaustive search (although it has been
shown that there cannot be a “black-box” proof that the Fiat-Shamir transform is secure
in the QROM [ARU14]).

The reason that there haven’t been any attacks taking advantage of the non-tightness
of the reduction is because there is an intermediate problem which is tightly equivalent,
even under quantum reductions, to the UF-CMA security of the signature scheme. This
problem is essentially a “convolution” of the underlying mathematical problem (such as
MSIS or discrete log) with a cryptographic hash function H. It would appear that as long
as there is no relationship between the structure of the math problem and H, solving this
intermediate problem is not easier than solving the mathematical problem.4

Below, we will introduce the hardness assumptions upon whose hardness the SUF-CMA
security of our scheme is based. The first two assumptions, MLWE and MSIS, are standard
lattice problems which are a generalization of LWE,Ring-LWE,SIS, and Ring-SIS. The third
problem, SelfTargetMSIS is the aforementioned problem that’s based on the combined

4In the ROM, there is indeed a (non-tight) reduction using the forking lemma that states that solving
this problem is as hard as solving the underlying mathematical problem.
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hardness of MSIS and the hash function H. In the classical ROM, there is a (non-tight)
reduction from MSIS to SelfTargetMSIS.

5.1 Assumptions
The MLWE Problem. For integers m, k, and a probability distribution D : Rq → [0, 1],
we say that the advantage of algorithm A in solving the decisional MLWEm,k,D problem
over the ring Rq is

AdvMLWE
m,k,D :=

∣∣Pr[b = 1 | A← Rm×k
q ; t← Rm

q ; b ← A(A, t)]
− Pr[b = 1 | A← Rm×k

q ; s1 ← Dk ; s2 ← Dm; b ← A(A,As1 + s2)]
∣∣ .

The MSIS Problem. To an algorithm A we associate the advantage function AdvMSIS
m,k,γ

to solve the (Hermite Normal Form) MSISm,k,γ problem over the ring Rq as

AdvMSIS
m,k,γ(A) := Pr

[
0 < ‖y‖∞ ≤ γ ∧ [ I | A ] · y = 0 | A← Rm×k

q ; y← A(A)
]
.

The SelfTargetMSIS Problem. Suppose that H : {0, 1}∗ → B60 is a cryptographic hash
function. To an algorithm A we associate the advantage function

AdvSelfTargetMSIS
H,m,k,γ (A) :=

Pr
[

0 ≤ ‖y‖∞ ≤ γ
∧ H([ I | A ] · y ‖ M ) = c

∣∣∣∣A← Rm×k
q ;

(
y :=

[
r
c

]
,M
)
← A|H(·)〉(A)

]
.

5.2 Signature Scheme Security
The concrete security of Dilithium was analyzed in [KLS17], where it was shown that if H is
a quantum random oracle (i.e., a quantum-accessible perfect hash function), the advantage
of an adversary A breaking the SUF-CMA security of the signature scheme is

AdvSUF-CMA
Dilithium (A) ≤ AdvMLWE

k,`,D (B) + AdvSelfTargetMSIS
H,k,`+1,ζ (C) + AdvMSIS

k,`,ζ′(D) + 2−254 , 5 (6)

for D a uniform distribution over Sη, and

ζ = max{γ1 − β, 2γ2 + 1 + 2d−1 · 60} ≤ 4γ2, (7)

ζ ′ = max{2(γ1 − β), 4γ2 + 2} ≤ 4γ2 + 2. (8)

Furthermore, if the running times and success probabilities (i.e. advantages) of A,B,C,D
are tA, tB, tC, tD, εA, εB, εC, εD, then the lower bound on tA/εA is within a small multiplicative
factor of min ti/εi for i ∈ {B,C,D}.

Intuitively, the MLWE assumption is needed to protect against key-recovery, the
SelfTargetMSIS is the assumption upon which new message forgery is based, and the MSIS
assumption is needed for strong unforgeability. We will now sketch some parts of the
security proof that are relevant to the concrete parameter setting.

5To simplify the concrete security bound, we assume that ExpandA produces a uniform matrix A ∈ Rk×`
q ,

ExpandMask(K , ·) is a perfect pseudo-random function, and CRH is a perfect collision-resistant hash
function.
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5.2.1 UF-CMA Security Sketch

It was shown in [KLS17] that for zero-knowledge deterministic signature schemes, if an
adversary having quantum access to H and classical access to a signing oracle can produce a
forgery of a new message, then there is also an adversary who can produce a forgery without
access to the signing oracle (so he only gets the public key).6 The latter security model is
called UF-NMA – unforgeability under no-message attack. By the MLWE assumption, the
public key (A, t = As1 + s2) is indistinguishable from (A, t) where t is chosen uniformly
at random. The proof that our signature scheme is zero-knowledge is fairly standard and
follows the framework from [Lyu09, Lyu12, BG14]. It is formally proved in [KLS17]7 and
we sketch the proof in Appendix B.

If we thus assume that the MLWEk,`,D problem is hard, where D is the distribution that
samples a uniform integer in the range [−η, η], then to prove UF-NMA security, we only
need to analyze the hardness of the experiment where the adversary receives a random
(A, t) and then needs to output a valid message/signature pair M , (z,h, c) such that

• ‖z‖∞ < γ1 − β

• H(UseHintq(h,Az− ct1 · 2d , 2γ2)‖M ) = c

• # of 1’s in h is ≤ ω

Lemma 1 implies that one can rewrite

UseHintq(h,Az− ct1 · 2d , 2γ2) = Az− ct1 · 2d + u, (9)

where ‖u‖∞ ≤ 2γ2 + 1. Furthermore, only ω coefficients of u will have magnitude greater
than γ2. If we write t = t1 · 2d + t0 where ‖t0‖∞ ≤ 2d−1, then we can rewrite Eq. (9) as

Az− ct1 · 2d + u = Az− c(t− t0) + u = Az− ct + (ct0 + u) = Az− ct + u′. (10)

Note that the worst-case upper-bound for u′ is

‖u′‖∞ ≤ ‖ct0‖∞ + ‖u‖∞ ≤ ‖c‖1 · ‖t0‖∞ + ‖u‖∞ ≤ 60 · 2d−1 + 2γ2 + 1 < 4γ2.

Thus a (quantum) adversary who is successful at creating a forgery of a new message is
able to find z, c,u′,M such that ‖z‖∞ < γ1−β, ‖c‖∞ = 1, ‖u′‖∞ < 4γ2, and M ∈ {0, 1}∗
such that

H

[ A | t | Ik ] ·

 z
c
u′

 ‖ M
 = c. (11)

Since (A, t) is completely random, this is exactly the definition of the SelfTargetMSIS
problem from above. A standard forking lemma argument can be used to show that
an adversary solving the above problem in the (standard) random oracle model can be
used to solve the MSIS problem. While giving a reduction using the forking lemma is a
good “sanity check”, it is not particularly useful for setting parameters due to its lack of
tightness. So how does one set parameters? The Fiat-Shamir transform has been used
for over 3 decades (and we have been aware of the non-tightness of the forking lemma for
two of them), yet the parameter settings for schemes employing it have ignored this loss

6It was also shown in [KLS17] that the “deterministic” part of the requirement can be relaxed. The
security proof simply loses a factor of the number of different signatures produced per message in its
tightness. Thus, for example, if one were to implement the signature scheme (with the same secret key) on
several devices with different random-number generators, the security of the scheme would not be affected
much.

7In that paper, it is actually proved that the underlying zero-knowledge proof is zero-knowledge and
then the security of the signature scheme follows via black box transformations.
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in tightness. Implicitly, therefore, these schemes rely on the exact hardness of analogues
(based on various assumptions such as discrete log [Sch89], one-wayness of RSA [GQ88],
etc.) of the problem in Eq. (11).

The intuition for the security of the problem in Eq. (11) (and its discrete log, RSA,
etc. analogues) is as follows: since H is a cryptographic hash function whose structure
is completely independent of the algebraic structure of its inputs, choosing some M
“strategically” should not help – so the problem would be equally hard if the M were fixed.
Then, again relying on the independence of H and the algebraic structure of its inputs,
the only approach for obtaining a solution appears to be picking some w, computing
H( w ‖ M ) = c, and then finding z,u′ such that Az + u′ = w + ct.8 The hardness of
finding such z,u′ with `∞-norms less than 4γ2 such that

Az + u′ = t′ (12)

for some t′ is the problem whose concrete security we will be analyzing. Note that this is
conservative because in Eq. (11) ‖z‖∞ < γ1 − β ≈ 2γ2. Furthermore, only ω coefficients of
u′ can be larger than 2γ2.

5.2.2 The Addition of the Strong Unforgeabilty Property

To handle the strong-unforgeability requirement, one needs to handle an additional case.
Intuitively, the reduction from UF-CMA to UF-NMA used the fact that a forgery of a
new message will necessarily require the use of a challenge c for which the adversary has
never seen a valid signature (i.e., (z,h, c) was never an output by the signing oracle). To
prove strong-unforgeability, we also have to consider the case where the adversary sees a
signature (z,h, c) for M and then only changes (z,h). In other words, the adversary ends
up with two valid signatures such that

UseHintq(h,Az− ct1 · 2d , 2γ2) = UseHintq(h′,Az′ − ct1 · 2d , 2γ2).

By Lemma 1, the above equality can be shown to imply that there exist ‖z‖∞ ≤ 2(γ1 − β)
and ‖u‖∞ ≤ 4γ2 + 2 such that Az + u = 0.

5.3 Concrete Security Analysis
In Appendix C, we describe the best known lattice attacks against the problems in Eq. (6)
upon which the security of our signature scheme is based. The best attacks involve
finding short vectors in some lattice. The main difference between the MLWE and MSIS
problems is that the MLWE problem involves finding a short vector in a lattice in which
an “unusually short” vector exists. The MSIS problem, on the other hand, involves just
finding a short vector in a random lattice. In knapsack terminology, the MLWE problem is
a low-density knapsack, while MSIS is a high-density knapsack instance. The analysis for
the two instances is slightly different and we analyze the MLWE problem in Appendix C.2
and the MSIS problem (as well as SelfTargetMSIS) in Appendix C.3.

We follow the general methodology from [ADPS16, BCD+16] to analyze the security
of our signature scheme, with minor adaptations. This methodology is significantly
more conservative than prior ones used in lattice-based cryptography. In particular, we
assume the adversary can run the asymptotically best algorithms known, with no overhead
compared to the asymptotic run-times. In particular, we assume the adversary can cheaply
handle huge amounts of (possibly quantum) memory. This conservatism is in line with
the goal of long-term post-quantum security. We note that despite this security analysis
methodology, our schemes remain competitive in practice.

8This is indeed the (non-tight) proof sketch in the classical random oracle model.
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The security parameters in Table 1 are based on this conservative methodology. Since
we are making so many approximations (in favor of the adversary), it may seem a little
strange that our numbers are so “precisely” stated. The purpose of such precision is to
make it possible to compare between our scheme and other lattice-based ones based on
the same conservative analysis. On the other hand, because our security levels understates
the actual security of the schemes and the best cryptanalytic algorithms are extremely
memory-intensive, we believe that our schemes still satisfy their stated “NIST Security
Level” designation despite the security numbers appearing to be below the required levels.

While the MLWE and MSIS problems are defined over polynomial rings, we do not
currently have any way of exploiting this ring structure, and therefore the best attacks are
mounted by simply viewing these problems as LWE and SIS problems. The LWE and SIS
problems are exactly as in the definitions of MLWE and MSIS in Section 5.1 with the ring
Rq being replaced by Zq.

5.4 Changing Security Levels
The most straightforward way of raising/lowering the security of Dilithium is by changing
the values of (k, `) and then adapting the value of η (and then β and ω) accordingly as in
Table 1. Increasing (k, `) by 1 each results in the public key increasing by ≈ 300 bytes and
the signature by ≈ 700 bytes; and increases security by ≈ 30 bits.

A different manner in which to increase security would be by lowering the values of γ1
and/or γ2. This would make forging signatures (whose hardness is based on the underlying
SIS problem) more difficult. Rather than increasing the size of the public key / signature,
the negative effect of lowering the γi is that signing would require more repetitions. One
could similarly increase the value of η in order to make the LWE problem harder at the
expense of more repetitions.9 Because the increase in running time is rather dramatic
(e.g. halving both γi would end up squaring the number of required repetitions as per
Eq. (5)), we recommend increasing (k, `) when needing to “substantially” increase security.
Changing the γi should be reserved only for slight “tweaks” in the security levels.
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A Proofs for Rounding Algorithm Properties
The three lemmas below prove each of the three parts of Lemma 1.

Lemma 3. Let r , z ∈ Zq with ‖z‖∞ ≤ α/2. Then

UseHintq (MakeHintq(z, r , α), r , α) = HighBitsq(r + z, α).

Proof. The output of Decomposeq is an integer r1 such that 0 ≤ r1 < (q − 1)/α and
another integer r0 such that ‖r0‖∞ ≤ α/2. Because ‖z‖∞ ≤ α/2, the integer v1 :=
HighBitsq(r + z, α) either stays the same as r1 or becomes r1 ± 1 modulo m = (q − 1)/α.
More precisely, if r0 > 0, then −α/2 < r0 + z ≤ α. This implies that v1 is either r1 or
r1 + 1 mod m. If r0 ≤ 0, then we have −α ≤ r0 + z ≤ α/2. In this case, we have v1 = r1
or r1 − 1 mod m.

The MakeHintq routine checks whether r1 = v1 and outputs 0 if this is so, and 1 if
r1 6= v1. The UseHintq routine uses the “hint” h to either output r1 (if y = 0) or, depending
on whether r0 > 0 or not, output either r1 + 1 mod+ m or r1 − 1 mod+ m.

The lemma below shows that r is not too far away from the output of the UseHintq
algorithm. This will be necessary for the security of the scheme.

Lemma 4. Let (h, r) ∈ {0, 1} × Zq and let v1 = UseHintq(h, r , α). If h = 0, then
‖r − v1 · α‖∞ ≤ α/2; else ‖r − v1 · α‖∞ ≤ α+ 1.

Proof. Let (r1, r0) := Decomposeq(r , α). We go through all three cases of the UseHintq
procedure.

Case 1 (h = 0): We have v1 = r1 and

r − v1 · α = r1 · α+ r0 − r1 · α = r0 ,

which by definition has absolute value at most α/2.
Case 2 (h = 1 and r0 > 0): We have v1 = r1 + 1− κ · (q − 1)/α for κ = 0 or 1. Thus

r − v1 · α = r1 · α+ r0 − (r1 + 1− κ · (q − 1)/α) · α
= −α+ r0 + κ · (q − 1).

After centered reduction modulo q, the latter has magnitude ≤ α.
Case 3 (h = 1 and r0 ≤ 0): We have v1 = r1 − 1 + κ · (q − 1)/α for κ = 0 or 1. Thus

r − v1 · α = r1 · α+ r0 − (r1 − 1 + κ · (q − 1)/α) · α
= α+ r0 − κ · (q − 1).

After centered reduction modulo q, the latter quantity has magnitude ≤ α+ 1.

The next lemma will play a role in proving the strong existential unforgeability of
our signature scheme. It states that two different h, h′ cannot lead to UseHintq(h, r , α) =
UseHintq(h′, r , α).

Lemma 5. Let r ∈ Zq and h, h′ ∈ {0, 1}. If UseHintq(h, r , α) = UseHintq(h′, r , α), then
h = h′.

Proof. Note that UseHintq(0, r , α) = r1 and UseHintq(1, r , α) is equal to (r1±1) mod+(q−
1)/α. Since (q − 1)/α ≥ 2, we have that r1 6= (r1 ± 1) mod+(q − 1)/α.

We now prove Lemma 2.
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Proof. (Of Lemma 2) We prove the lemma for integers, rather than vectors of polynomials,
since the HighBits function works independently on each coefficient. If ‖LowBitsq(r , α)‖∞ <
α/2−β, then r = r1 ·α+ r0 where −α/2 +β < r0 ≤ α/2 +β. Then r + s = r1 ·α+ (r0 + s)
and −α/2 < r0 + s ≤ α/2. Therefore r + s mod ± α = r0 + s, and thus

(r + s)− ((r + s) mod ± α) = r1 · α = r − (r mod ± α),

and the claim in the Lemma follows.

B Zero-Knowledge Proof
The security of our scheme does not rely on the part of the public key t0 being secret and
so we will be assuming that the public key is t rather than t1.

We want to first compute the probability that some particular (z, c) is generated in
Step 17 taken over the randomness of y and the random oracle H which is modeled as a
random function. We have

Pr[z, c] = Pr[c] · Pr[y = z− cs1 | c].

Whenever z has all its coefficients less than γ1−β then the above probability is exactly
the same for every such tuple (z, c). This is because ‖csi‖∞ ≤ β (with overwhelming
probability), and thus ‖z− cs1‖∞ ≤ γ1 − 1, which is a valid value of y. Therefore, if we
only output z when all its coefficients have magnitudes less than γ1 − β, then the resulting
distribution will be uniformly random over S`γ1−β−1 × B60.

The simulation of the signature follows [Lyu12, BG14]. The simulator picks a uniformly
random (z, c) in S`γ1−β−1 × B60, after which it also makes sure that

‖r0‖∞ = ‖LowBitsq(w− cs2, 2γ2)‖∞ < γ2 − β.

By Equation (2), we know that w − cs2 = Az − ct, and therefore the simulator can
perfectly simulate this as well.

If z does indeed satisfy ‖LowBitsq(w−cs2, 2γ2)‖∞ < γ2−β, then as long as ‖cs2‖∞ ≤ β,
we will have

r1 = HighBitsq(w− cs2, 2γ2) = HighBitsq(w, 2γ2) = w1.

Since our β was chosen such that the probability (over the choice of c, s2) that ‖cs2‖∞ < β
is > 1− 2−128, the simulator does not need to perform the check that r1 = w1 and can
always assume that it passes.

We can then program
H(µ ‖ w1)← c .

Unless we have already set the value of H(µ ‖ w1) to something else, the resulting pair
(z, c) has the same distribution as in a genuine signature of µ. It was shown in [KLS17]
that the probability, over the random choice of A and y, that we already set the value of
H(µ ‖ w1) is less than 2−255.

All the other steps (after Step 19) of the signing algorithm are performed using public
information and are therefore simulatable.

C Concrete Security
C.1 Lattice Reduction and Core-SVP Hardness
The best known algorithm for finding very short non-zero vectors in Euclidean lattices is
the Block–Korkine–Zolotarev algorithm (BKZ) [SE94], proposed by Schnorr and Euchner
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in 1991. More recently, it was proven to quickly converge to its fix-point [HPS11] and
improved in practice [CN11]. Yet, what it achieves asymptotically remains unchallenged.

BKZ with block-size b makes calls to an algorithm that solves the Shortest lattice
Vector Problem (SVP) in dimension b. The security of our scheme relies on the necessity
to run BKZ with a large block-size b and the fact that the cost of solving SVP is
exponential in b. The best known classical SVP solver [BDGL16] runs in time ≈ 2cC ·b

with cC = log2
√

3/2 ≈ 0.292. The best known quantum SVP solver [Laa15, Sec. 14.2.10]
runs in time ≈ 2cQ·b with cQ = log2

√
13/9 ≈ 0.265. One may hope to improve these run-

times, but going below ≈ 2cP ·b with cP = log2
√

4/3 ≈ 0.2075 would require a theoretical
breakthrough. Indeed, the best known SVP solvers rely on covering the b-dimensional
sphere with cones of center-to-edge angle π/3: this requires 2cP ·b cones. The subscripts C,
Q, P respectively stand for Classical, Quantum and Paranoid.

The strength of BKZ increases with b. More concretely, given as input a basis (c1, . . . , cn)
of an n-dimensional lattice, BKZ repeatedly uses the b-dimensional SVP-solver on lattices
of the form (ci+1(i), . . . , cj(i)) where i ≤ n, j = min(n, i + b) and where ck(i) denotes
the projection of ck orthogonally to the vectors (c1, . . . , ci). The effect of these calls
is to flatten the curve of the `i = log2 ‖ci(i − 1)‖’s (for i = 1, . . . ,n). At the start of
the execution, the `i ’s typically decrease fast, at least locally. As BKZ preserves the
determinant of the ci ’s, the sum of the `i ’s remains constant throughout the execution,
and after a (small) polynomial number of SVP calls, BKZ has made the `i ’s decrease less.
It can be heuristically estimated that for sufficiently large b, the local slope of the `i ’s
converges to

slope(b) = 1
b − 1 log2

(
b

2πe(π · b)1/b
)
,

unless the local input `i ’s are already too small or too large. The quantity slope(b) decreases
with b, implying that the larger b the flatter the output `i ’s.

In our case, the input `i ’s are of the following form (cf. Fig. 10). The first ones
are all equal to log2 q and the last ones are all equal to 0. BKZ will flatten the jump,
decreasing `i ’s with small i’s and increasing `i ’s with large i’s. However, the local slope
slope(b) may not be sufficiently small to make the very first `i ’s decrease and the very
last `i ’s increase. Indeed, BKZ will not increase (resp. increase) some `i ’s if these are
already smaller (resp. larger) than ensured by the local slope guarantee. In our case, the
`i ’s are always of the following form at the end of the execution:

• The first `i ’s are constant equal to log2 q (this is the possibly empty Zone 1).

• Then they decrease linearly, with slope slope(b) (this is the never-empty Zone 2).

• The last `i ’s are constant equal to 0 (this is the possibly empty Zone 3).

The graph is continuous, i.e., if Zone 1 (resp. Zone 3) is not empty, then Zone 2 starts
with `i = log2 q (resp. ends with `i = 0).

C.2 Solving MLWE
Any MLWE`,k,D instance for some distribution D can be viewed as an LWE instance of
dimensions 256·` and 256·k. Indeed, the above can be rewritten as finding vec(s1), vec(s2) ∈
Z256·` × Z256·k from (rot(A), vec(t)), where vec(·) maps a vector of ring elements to
the vector obtained by concatenating the coefficients of its coordinates, and rot(A) ∈
Z256·k×256·`

q is obtained by replacing all entries aij ∈ Rq of A by the 256 × 256 matrix
whose z-th column is vec

(
xz−1 · aij

)
.

Given an LWE instance, there are two lattice-based attacks. The primal attack and
the dual attack. Here, the primal attack consists in finding a short non-zero vector in the
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Figure 10: Evolution of Gram-Schmidt length in log-scale under BKZ reduction for various
blocksizes. The area under the curves remains constant, and the slope in Zone 2 decrease
with the blocksize. Note that Zone 3 may disappear before Zone 1, depending on the shape
of the input basis.

lattice Λ = {x ∈ Zd : Mx = 0 mod q} where M = (rot(A)[1:m]|Im|vec(t)[1:m]) is an m× d
matrix where d = 256 · `+ m + 1 and m ≤ 256 · k. Indeed, it is sometime not optimal to
use all the given equations in lattice attacks.

We tried all possible numberm of rows, and, for each trial, we increased the blocksize of b
until the value `d−b obtained as explained above was deemed sufficiently large. As explained
in [ADPS16, Sec. 6.3], if 2`d−b is greater than the expected norm of (vec(s1), vec(s2)) after
projection orthogonally to the first d − b vectors, it is likely that the MLWE solution can
be easily extracted from the BKZ output.

The dual attack consists in finding a short non-zero vector in the lattice Λ′ = {(x,y) ∈
Zm ×Zd : MTx + y = 0 mod q)}, M = (rot(A)[1:m]) is an m × d matrix where d = 256 · `
and m ≤ 256 · k. Again, for each value of m, we increased the value of b until the
value `1 obtained as explained above was deemed sufficiently small according the analysis
of [ADPS16, Sec. 6.3].

C.3 Solving MSIS and SelfTargetMSIS
As per the discussion in Section 5.2.1, the best known attack against the SelfTargetMSIS
problem involves either breaking the security of H or solving the problem in Eq. (12). The
latter amounts to solving the MSISk,`+1,ζ problem for the matrix [ A | t′ ]. 10

Note that the MSIS instance can be mapped to a SIS256·k,256·(`+1),ζ instance by consi-
dering the matrix rot(A|t′) ∈ Z256·k×256·(`+1)

q . The attack against the MSISk,`,ζ′ instance
in Eq. (6) can similarly be mapped to a SIS256·k,256·`,ζ′ instance by considering the matrix
rot(A) ∈ Z256·k×256·`

q . The attacker may consider a subset of w columns, and let the
solution coefficients corresponding to the dismissed columns be zero.
Remark 1. An unusual aspect here is that we are considering the infinity norm, rather
than the Euclidean norm. Further, for our specific parameters, the Euclidean norms of the
solutions are above q. In particular, the vector (q, 0, . . . , 0)T belongs to the lattice, has

10Note that a solution to Eq. (12) would require the coefficient in from of t′ to be ±1, while we’re
allowing any small polynomial. Furthermore, as discussed after Eq. (12), some parts of the real solution
are smaller than the bound ζ, but we’re ignoring this for the sake of being conservative with our analysis.
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Figure 11: Effect of forgetting q-vectors by randomization, under the same BKZ-blocksize
b.

Euclidean norm below that of the solution, but its infinity norm above the requirement.
This raises difficulties in analyzing the strength of BKZ towards solving our infinity norm
SIS instances: indeed, even with small values of b, the first `i ’s are short (they correspond
to q-vectors), even though they are not solutions.

For each number w of selected columns and for each value of b, we compute the
estimated BKZ output `i ’s, as explained above. We then consider the smallest i such that
`i is below log2 q and the largest j such that `j above 0. These correspond to the vectors
that were modified by BKZ, with smallest and largest indices, respectively. In fact, for
the same cost as a call to the SVP-solver, we can obtain

√
4/3b vectors with Euclidean

norm ≈ 2`i after projection orthogonally to the first i − 1 basis vectors. Now, let us look
closely at the shape of such a vector. As the first i − 1 basis vectors are the first i − 1
canonical unit vectors multiplied by q, projecting orthogonally to these consists in zeroing
the first i − 1 coordinates. The remaining w − i + 1 coordinates have total Euclidean
norm ≈ 2`i ≈ q, and the last w − j coordinates are 0. We heuristically assume that these
coordinates have similar magnitudes σ ≈ 2`i/

√
j − i + 1; we model each such coordinate

as a Gaussian of standard deviation σ. We assume that each one of our
√

4/3b vectors
has its first i − 1 coordinates independently uniformly distributed modulo q, and finally
compute the probability that all coordinates in both ranges [0, i − 1] and [i, j] are less than
B in absolute value. Our cost estimate is the inverse of that probability multiplied by the
run-time of our b-dimensional SVP-solver.

Forgetting q-vectors. For all the parameter sets in Table 1, the best parametrization of
the attack above kept the basis in a shape with a non-trivial Zone 1. We note that the
coordinates in this range have a quite lower probability of passing the `∞ constraint than
coordinates in Zone 2. We therefore considered a strategy consisting of “forgetting” the
q-vectors, by re-randomizing the input basis before running the BKZ algorithm. For the
same blocksize b, this makes Zone 1 of the output basis disappear (BKZ does not find
the q-vectors), at the cost of producing a basis with first vectors of larger Euclidean norms.
This is depicted in Fig. 11.

It turns out that this strategy always improves over the previous strategy for the
parameter ranges considered in Table 1. We therefore used this strategy for our security
estimates.

C.4 On Other Attacks

For our parameters, the BKW [BKW03] and Arora–Ge [AG11] families of algorithms are
far from competitive.
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Algebraic attacks. One specificity of our LWE and SIS instances is that they are inherited
from MLWE and MSIS instances. One may wonder whether the extra algebraic structure
of the resulting lattices can be exploited by an attacker. The line of work of [CGS14,
BS16, CDPR16, CDW17] did indeed find new cryptanalytic results on certain algebraic
lattices, but [CDW17] mentions serious obstacles towards breaking cryptographic instances
of Ring-LWE. By switching from Ring-LWE to MLWE, we get even further away from
those weak algebraic lattice problems.

Dense sublattice attacks. Kirchner and Fouque [KF17] showed that the existence of
many linearly independent and unexpectedly short lattice vectors (much shorter than
Minkowski’s bound) helps BKZ run better than expected in some cases. This could
happen for our primal LWE attack, by extending M = (rot(A)[1:m]|Im|vec(t)[1:m]) to
(rot(A)[1:m]|Im|rot(t)[1:m]): the associated lattice now has 256 linearly independent short
vectors rather than a single one. The Kirchner-Fouque analysis of BKZ works best if both
q and the ratio between the number of unexpectedly short vectors and the lattice dimension
are high. In the NTRU case, for example, the ratio is 1/2, and, for some schemes derived
from NTRU, the modulus q is also large. We considered this refined analysis of BKZ in
our setup, but, to become relevant for our parameters, it requires a parameter b which
is higher than needed with the usual analysis of BKZ. Note that [KF17] also arrived to
the conclusion that this attack is irrelevant in the small modulus regime, and is mostly a
threat to fully homomorphic encryption schemes and cryptographic multilinear maps.

Note that, once again, the switch from Ring-LWE to MLWE takes us further away
from lattices admitting unconventional attacks. Indeed, the dimension ratio of the dense
sub-lattice is 1/2 in NTRU, at most 1/3 in lattices derived from Ring-LWE, and at most
1/(`+ 2) in lattices derived from MLWE.

Specialized attack against `∞-SIS. At last, we would like to mention that it is not clear
whether the attack sketched in Appendix C.3 above for SIS in infinity norm is optimal.
Indeed, as we have seen, this approach produces many vectors, with some rather large
uniform coordinates (at indices 1, . . . , i), and smaller Gaussian ones (at indices i, . . . , j). In
our current analysis, we simply hope that one of the vector satisfies the `∞ bound. Instead,
one could combine them in ways that decrease the size of the first (large) coefficients, while
letting the other (small) coefficients grow a little bit.

This situation created by the use of `∞-SIS (see Remark 1) has — to the best of our
knowledge — not been studied in detail. After a preliminary analysis, we do not consider
such an improved attack a serious threat to our concrete security claims, especially in light
of the approximations already made in favor of the adversary.
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