
Spectre Declassified: Reading from the Right Place
at the Wrong Time

Basavesh Ammanaghatta Shivakumar , Jack Barnes , Gilles Barthe ,
Sunjay Cauligi , Chitchanok Chuengsatiansup , Daniel Genkin

Sioli O’Connell , Peter Schwabe , Rui Qi Sim , Yuval Yarom

Georgia Institute of Technology, Atlanta, United States
IMDEA Software Institute, Madrid, Spain

MPI-SP, Bochum, Germany
Radboud University, Nijmegen, The Netherlands
The University of Adelaide, Adelaide, Australia

Abstract—Practical information-flow programming languages
commonly allow controlled leakage via a “declassify” construct—
programmers can use this construct to declare intentional leakage.
For instance, cryptographic signatures and ciphertexts, which are
computed from private keys, are viewed as secret by information-
flow analyses. Cryptographic libraries can use declassify to make
this data public, as it is no longer sensitive.

In this paper, we study the impact of speculative execution
in practical information-flow programming languages. First, we
show that speculative execution leads to unintended leakage
that violates the programmer’s intent. Concretely, we present
a PoC that recovers the AES key of an implementation of AES
written in FaCT, a domain-specific language for constant-time
programming. Our PoC is an instance of a Spectre-PHT attack;
interestingly, it remains effective even if the program is compiled
with Speculative Load Hardening (SLH), a compiler-based coun-
termeasure against Spectre-PHT. Second, we propose compiler-
based countermeasures for protecting programs against leak-
age, and show that these countermeasures achieve relative non-
interference: Informally, speculative leakage of the transformed
programs must correspond to sequential leakage of the original
programs. One of our countermeasures is a new transformation
of independent interest called selective speculative load hardening
(selSLH). SelSLH optimizes SLH as implemented by the LLVM
compiler, reducing the number of inserted mitigations. Third, we
implement one of our countermeasures in the FaCT compiler and
evaluate performance overhead for core cryptographic routines
from several open-source projects. The results indicate a moder-
ate overhead. Although we do not implement selSLH, we carry
a preliminary evaluation which suggests a significant gain over
SLH for cryptographic implementations.

I. INTRODUCTION

Cryptographic software can be vulnerable to devastating
side-channel attacks, allowing malicious parties to recover
cryptographic keys from observing the timing behavior of
programs. A common means to limit such attacks is to
follow the cryptographic constant-time policy, which states that
programs do not leak confidential data through an ideal model
of cache-based timing side-channels. However, writing efficient
constant-time cryptographic software is notoriously hard [28].
The challenges of writing constant-time cryptographic software
are partially alleviated by dedicated verification or mitigation

1 public uint8 otp_and_decode(
2 secret uint8 m,
3 secret uint8 otp) {
4

5 secret mut uint8 c = m;
6 for (uint8 i from 0 to 8) {
7 c ^= (otp & (1 << i));
8 }
9

10 public uint8 d = declassify(c);
11 return decode[d];
12 }

Listing 1: One-time pad into table-based decoder. Skipping the
for loop (due to misspeculation) directly leaks the secret m.

frameworks. One example of such a framework is FaCT [15], a
security enhancing compiler that transforms typable programs
into constant-time programs. The FaCT compiler features a con-
strained information-flow type system with formal guarantees.
However, these guarantees have a limited scope: First, they
only hold for programs without declassification. Cryptographic
software, however, typically must release information (in a
controlled way). Second, they only consider a sequential
model of execution. Unfortunately, modern platforms often
perform aggressive optimizations—one such microarchitectural
optimization is speculative execution, which is at the root
of the recent and devastating Spectre attacks [30]. It is
possible to extend the guarantees of the FaCT compiler to
programs with declassification using results from computational
information flow [5, 22, 32, 33]—see also [44] for a survey on
declassification. However, we are not aware of any work that
studies the interactions between declassification and speculative
execution.

The interaction between declassification and speculative
execution can cause unintentional leaks: This is demonstrated
by the FaCT program in Listing 1. In this program, a secret
message m is encrypted by repeatedly performing a bitwise
one-time pad; the resulting ciphertext c is fed into a table-based

decoder. Since the ciphertext depends on the secret message,
it too is typed secret. For the FaCT compiler to accept this
program, c must be declassified before it is fed to the decoder,
as array indices can leak to an attacker (e.g., via the cache).
Assuming one-time pads are uniformly distributed, it is easy
to see that the program does not leak: Indeed, the ciphertext is
uniformly distributed and independent from secrets, and thus
the leakage is also independent of secrets.

On the other hand, if the program in Listing 1 were
to somehow bypass the loop, it would trivially leak m via
c. Such a scenario is clearly impossible during sequential
execution; however, under adversarial speculative execution,
an attacker with control over branch predictions can cause the
loop condition to mispredict, skipping the loop body entirely.

Existing defenses against speculative attacks include spec-
ulative load hardening (SLH) [14]: Informally, SLH protects
programs by masking the values of speculatively executed
loads, ensuring memory safety during speculative execution.
Unfortunately, applying SLH to Listing 1 does not offer any
protection, as the attack does not depend on any unsafe loads
from misspeculated addresses.

To analyze these undesirable interactions between declassi-
fication and speculative execution, we first develop a formal
threat model (§III) and derive a simple language, semantics,
and type system to express these attacks and our defenses (§IV).
We then propose a new security property called relative non-
interference (RNI) and an “ideal” speculative semantics for
which well-typed programs are RNI (§V). To realize this
idealized semantics, we develop two program transformations:
Selective speculative load hardening (selSLH), an optimization
over SLH which only masks values speculatively loaded into
publicly-typed variables; and masked declassification, which
masks values declassified during speculation. These counter-
measures simulate the idealized semantics during adversarially
controlled speculative execution of a program—well-typed
programs transformed with these countermeasures thus satisfy
RNI. We also briefly consider other countermeasures which
combine (selective) SLH and add speculation fences before
declassification.

We evaluate the simplest form of our countermeasure—SLH
with fenced declassify—by modifying the FaCT compiler (§VI).
We find that the overhead of our countermeasure on the
FaCT cryptographic benchmarks is under 10%. In addition, we
heuristically evaluate the performance savings of selSLH over
SLH by comparing the number of public- and secret-typed
loads in different cryptographic routines. Our results show
that selSLH can reduce the number of masked loads in these
programs by 80% or more.

Finally, we demonstrate the practical importance of RNI and
our theoretical model (§VII): We develop a proof-of-concept
(PoC) attack against a FaCT implementation of AES. Even
when this implementation is compiled with SLH, our PoC can
recover the cryptographic keys. We further demonstrate PoC
attacks against two implementations of AES from OpenSSL.

We will place all software associated with this paper—the
PoC attack against AES code, the FaCT benchmarks, and the

heuristic analysis of selSLH—into the public domain and make
it available online.

II. BACKGROUND

A. Microarchitectural channels

Modern processor microarchitectures aim to improve the
performance of software, usually by predicting the future
behavior of programs. For example, data caches in the processor
store data that a program has recently accessed, allowing them
to exploit temporal and spatial locality in software. Similarly,
a processor’s branch predictors monitor conditional jumps
that the software executes, aiming to predict whether or not
future jumps will be taken and what the destination address
will be. Although the state of the microarchitecture does not
affect the computation results, it does affect the program
performance. Consequently, a program that monitors its own
performance, e.g., by measuring the time it takes to perform
certain operations, can deduce the state of the microarchitecture.
Moreover, because the state of the microarchitecture is deter-
mined by program execution, monitoring the microarchitecture
will leak information about past execution. Microarchitectural
side-channel attacks [23] exploit these information leaks: An
attacker program monitors its own performance to determine
the behavior of a victim, with which it shares the use of
microarchitectural components.

Microarchitectural attacks have exploited a variety of
microarchitectural components, including data caches [34,
36, 51, 53], branch predictors [1, 21], translation lookaside
buffers [25], and return address stacks [18]. These attacks
have devastating consequences for the security of software,
breaking cryptography [1, 36, 53], performing keystroke
monitoring [26], reversing machine-learning models [52], recon-
structing databases [45], and fingerprinting websites [46, 47].

Of particular relevance to cryptographic code are cache
attacks, such as FLUSH+RELOAD [53], which can determine
which memory addresses a victim program has accessed: First,
the attacker evicts a monitored memory location from the
cache using a dedicated instruction, such as CLFLUSH on x86
processors. The attacker then allows the victim program to
execute. Finally, the attacker measures the time to access the
previously evicted memory location. If the victim accessed
the monitored location, that location would be cached, and
the access time will be short. Otherwise, the contents of the
memory location will have to come from the RAM, and the
access time will be long.

B. Spectre attacks

Modern processors use speculative execution as a means
to improve performance. Under speculative execution, the
processor fetches and executes instructions before knowing if
these computations are required, rather than waiting for the
results of preceding computations. A simple case of speculative
execution is for branching statements: Instead of waiting for
result of a branch condition, the processor may use a branch
predictor to guess which path will be taken and start executing
the predicted branch. Later, it will check whether the branch

2

predictor was correct, rolling back execution if this was not
the case. The rollback mechanism ensures that architectural
effects remain correct, e.g., registers and other architectural
state are reset to the initial point of misspeculation. However,
the microarchitectural state, such as the cache, is not rolled
back. As a consequence, speculative execution can leak data
that would be protected under sequential (non-speculative)
execution. Attacks that exploit these predictors are known as
Spectre attacks [30].

1 void access(public uint8[] array,
2 public uint64 index) {
3 if (index < len array) {
4 public uint8 res = array[index];
5 leak(res);
6 }
7 }

Listing 2: A FaCT program vulnerable to the basic Spectre-
PHT attack. The function checks that the index refers to an
item within the array before it accesses the array with the
index, leaking the result.

Listing 2 shows a program snippet that is vulnerable against
a basic Spectre attack. Because this style of attack targets
the processor’s pattern history table—which is responsible for
branch predictions—it is termed a Spectre-PHT attack [13]. The
snippet in Listing 2 ensures that all memory accesses are within
the bounds of the input array. Under a sequential execution
model, this snippet succeeds at its goal: If an out-of-bounds
index is provided, the condition on line 3 will be false and
the access will not be executed. Under a speculative execution
model, however, it is possible for the body of the branch to be
executed before the branch condition—even if the condition is
ultimately revealed to be false. As these values are obtained
from incorrect speculation, execution that depends on them
will ultimately be squashed via an execution rollback. However,
an attacker can encode these values into the microarchitecture
state before the rollback, such as into the cache of the processor.
They can then use a cache side-channel such as FLUSH+
RELOAD [53] to read the cache state and recover the value
later. We refer the reader to the literature for a more extensive
account of Spectre attacks [13].

III. THREAT MODEL

We distinguish between the theoretical threat model, which
we use to prove the correctness of our countermeasure, and
the practical threat model, which instantiates our theoretical
threat model and which we use for our case study.

Our theoretical analysis is inspired by standard models for
reasoning about side-channel leakage: We assume a victim
program whose execution leaks via memory accesses and
control flow, and a co-located attacker whose goal is to coerce
the victim program into leaking sensitive data. The attacker
can use the public interface of the victim but cannot otherwise
execute code in the victim context and cannot directly read
or write the victim’s memory or registers. More specifically,

we assume that the attacker can influence and observe the
microarchitectural state of the victim program. Following the
standard Spectre-PHT threat model [16, 27], we allow the
attacker full control over the prediction of conditional branches
and assume the attacker can observe both the control-flow and
memory trace of the program.

Our model makes two additional conservative assumptions
regarding unsafe accesses and declassified values: First, we
assume that target addresses of out-of-bounds memory accesses
are controlled by the attacker. This allows us to abstract over
the memory layout of data in the victim program. Second,
we assume that the attacker immediately observes declassified
values. These conservative assumptions lead to a stronger notion
of security that is not tied to specific architectural models.

Our case study is carried out in an instantiation of this
attack model, inspired by Patrignani and Guarnieri [37]. In
this instantiation, the victim is a library code that has access
to a secret heap, and the attacker is code that invokes the
victim (and can also be called by the victim). However, the
attacker code cannot directly access the secret data, even during
misspeculated execution. This limitation can be enforced, e.g.,
through instrumentation [35, 49] or hardware mechanisms [29,
48, 50]. For our case study, we do not use such enforcing
mechanisms; instead, our attacker simply does not access the
secret data.

IV. SEMANTICS AND TYPING

For the theoretical analysis, we analyze programs in terms
of a core imperative while-language.

A. Language syntax

We present the formal syntax of our language in Figure 1.
Our language is a while-language with speculation fences and
explicit declassification. For simplicity, we assume that memory
can only be accessed through fixed-size arrays. Our language
also features (constant-time) conditional expressions, which
we use for our countermeasures (see Section V-C).

We let v P V range over values, x P X range over registers,
and a P A range over arrays. We assume all values are either
integers or booleans and we let |a| denote the size of array
a. The state of a program during execution is then given
by the tuple xc, ρ, µ, by: The program, c P Com, is the next
command (or sequence of commands) to execute. The register
map, ρ : X Ñ V , maps register names to values; we write JeKρ
for evaluating expression e with the register mapping ρ, and we
write ρrx :“ vs to update register x with value v. The memory,
µ : A ˆ V Ñ V , maps addresses—pairs of array names and
indices—to values; we write µrpa, iqs to retrieve the value at
index i in array a; and we write µrpa, iq :“ vs to update the
array a at index i with value v. Finally, the speculation flag,
b, is a Boolean value; we set b to J when the program is
misspeculating.

B. Speculative semantics

Formally, we model speculative execution as an instrumented
adversarial semantics inspired by [9, 16]. This style of

3

e P Expr ::“ v value
| x register
| oppe, . . . , eq operator
| e ? e : e conditional expression

c P Com ::“ skip empty, do nothing
| c; c sequence
| x :“ e assignment
| x :“declassify e declassification
| x :“ ares load from array a offset e
| ares :“ e store to array a offset e
| if t then c else c conditional
| while t do c while loop
| fence fence

Figure 1: Syntax of programs.

semantics departs from classic semantics by using explicit
observations to model side-channel leakage and adversarial di-
rectives for modeling adversarial control over branch prediction
and out-of-bounds accesses.

One-step execution of programs is given by a labeled
transition relation between states:

xc, ρ, µ, by
o
ÝÝÑ
d
xc1, ρ1, µ1, b1y

The directive d and observation o are taken from the following
syntaxes:

d P Dir ::“ step | force | load a, i | store a, i
o P Obs ::“ ‚ | read a, v | write a, v | branch b | decl v

Each observation o represents a potential leak of information
in the standard constant-time model [8].1 The read a, v
and write a, v observations, respectively, capture information
that is leaked via the cache or other memory side-channel
attacks [47, 53]. Similarly, the branch b observation captures
information an attacker can recover from the control flow of
the program, such as through port contention [2] or instruction
cache analysis [1, 21]. In addition, we include an observation
decl v that immediately leaks any values that are explicitly
declassified, as we conservatively assume that the attacker will
observe any declassified information.

The adversarial directives d allow our modeled attacker
to control the speculative behavior of a program during
execution. For example, to represent an attacker that can cause
a conditional branch to take an misspeculated path, we allow
the attacker to supply the directive force, which forces the
program down the wrong branch. Similarly, when a program
is about to perform an unsafe load or store, we conservatively
allow the attacker to control the address that is read from
(or written to) with the directive load a, i (resp. store a, i).
Otherwise, the attacker can supply the directive step, which
simply executes the program as per the usual semantics.

1For simplicity, we assume programs do not contain instructions with data-
depending timing.

We provide our execution rules in Figure 2. Our rules are
similar to usual semantics for a simple while-language: Rules
rSEQ-SKIPs and rSEQs allow empty commands and command
sequencing, while rule rASSIGNs evaluates a given expression
e using the register file ρ and updates the register x accordingly.
We describe in detail our divergence from usual semantics:

Conditional branching. Conditional branches (rule rIFs) eval-
uate their branch expression t, continuing down the associated
branch. The value of the condition is leaked to the attacker via
the observation branch JtKρ. While loops (rule rWHs) proceed
similarly, leaking the loop condition on each iteration. We
also allow the attacker to force conditional branches and while
loops to misspeculate the result of their respective conditions
(rules rIF-Ss and rWH-Ss). When the attacker issues the
directive force instead of step, these rules cause execution
to proceed down the incorrect branch. Accordingly, we update
the speculation flag b to J to signal that we have misspeculated.
Because the force directive always forces the incorrect path,
we know that b “ J if and only if we have diverged from
sequential execution.

Memory operations. All memory operations in our semantics
are given as indices into discrete arrays. For safe accesses
(rules rLDs and rSTs) where the evaluated index JeKρ is in-
bounds for a, we leak the memory address via observation
read a, JeKρ (resp. write a, JeKρ). We assume all programs are
memory-safe during sequential execution. However, during
misspeculation, an attacker may coerce a program to perform
unsafe memory operations (rules rLD-Us and rST-Us). If,
during a misspeculated memory operation, the index e is
out-of-bounds for array a (that is, JeKρ R r0, |a|q), then we
conservatively allow the attacker to explicitly specify the
memory address that actually gets accessed. In this case, the
attacker issues the directive load a1, i (resp. store a1, i) that
determines the address that is loaded from (or stored to) in
memory—this may use a different array entirely.

Speculation barriers. Modern processors include speculation
barrier instructions that halt execution and wait for all
speculation to properly resolve. We model speculation barriers
in our language with the fence command (rule rFENs), which
only allows execution to continue if the current execution has
never misspeculated (that is, b “ K). Otherwise, if we have
misspeculated (i.e., b “ J) then we let execution get stuck.

Declassification. Declassified assignment (rule rDECLs)
is semantically similar to regular assignment. However, we
explicitly leak the value of the expression e to the attacker via
the observation decl JeKρ.

The following lemma summarizes key structural properties
of execution:

Lemma 1. If xc, ρ, µ, by o
ÝÝÑ
d
xc1, ρ1, µ1, b1y then:

‚ If b “ J then b1 “ J.

‚ If b “ K and b1 “ J then d “ force.

‚ If d “ load a, v, store a, v then b “ J.

4

The first item states that there is no way for b to reset
to K once it has been set; we purposefully do not model
speculative rollback, as it is unnecessary when considering all
possible execution paths as in our analysis [9]. The second
item states that the only way for b to become J (i.e., for
execution to misspeculate) is through the force directive. Thus
every execution of a program follows sequential semantics
up until the point of misspeculation (if any occurs). The last
item states that unsafe accesses only happen during speculative
execution.
Complete executions. We let xc, ρ, µ, by O

ÝÑ
D
Ñ xc1, ρ1, µ1, b1y de-

note the labeled reflexive-transitive closure of single-step execu-
tion. Moreover, we write xc, ρ, µ,Ky óOD when xc, ρ, µ,Ky O

ÝÑ
D
Ñ

xskip, ρ1, µ1, b1y or xc, ρ, µ,Ky O
ÝÑ
D
Ñ xfence, ρ1, µ1,Jy: The first

case corresponds to a complete execution that has terminated
and the second to a misspeculated execution that has become
stuck. When execution remains entirely sequential, i.e., all direc-
tives are step, we write xc, ρ, µy óO instead of xc, ρ, µ,Ky óOD.

C. Typing environment and speculation

We assume that every register and array is tagged with a
security level. For simplicity, we only consider the lattice of
security levels L ď H , where H is secret data and L is public
data: Public values can be treated as secret, but not vice versa
(unless explicitly declassified). Other choices of security lattices
are possible, but are not considered in this paper. Additionally,
we do not consider arrays with mixed sensitivity—arrays are
either entirely public or entirely secret.

We use Γ to denote the static typing environment; Γpxq and
Γpaq represent the security levels of registers x and arrays a
respectively. We extend Γ to arbitrary expressions by setting
Γpeq “ maxxPVarspeq Γpxq, where Varspeq is the set of variables
contained in e.

We present our typing rules in Figure 3. As usual, we
allow public values to be assigned to secret variables, but
not vice-versa: Rule rASSIGNs specifies Γpeq ď Γpxq for
x :“ e to be well-typed. Rules rLDs and rSTs enforce similar
constraints. In addition, memory and control-flow commands
use constant-time typing rules [15, 16]: Array indices must
be public (Γpeq “ L in rules rLDs and rSTs), since memory
addresses are leaked to the attacker during execution. Similarly,
control flow can only depend on public branching conditions
(Γptq “ L in rules rIFs and rWHs) since the branch conditions
are also leaked. Finally, explicit declassification (rule rDECLs)
allows secret values to be assigned to public variables with no
constraints on the type of e.

With this type system, well-typed programs without declas-
sification will be secure under standard execution, since only
public values can leak via observations. We formalize this
claim using the standard notion of low-equivalence:

Definition 1 (Low equivalence). pρ1, µ1q „ pρ2, µ2q iff
ρ1pxq “ ρ2pxq for every x P X such that Γpxq “ L and
µ1paq “ µ2paq for every a P A such that Γpaq “ L.

ρ1 “ ρrx :“ JeKρs

xx :“ e, ρ, µ, by
‚

ÝÝÑ
step

xskip, ρ1, µ, by
rASSIGNs

JeKρ P r0, |a|q ρ1 “ ρrx :“ µrpa, JeKρqss

xx :“ ares, ρ, µ, by
read a,JeKρ
ÝÝÝÝÝÝÝÑ

step
xskip, ρ1, µ, by

rLDs

JeKρ R r0, |a|q i P r0, |a1|q ρ1 “ ρrx :“ µrpa1, iqss

xx :“ ares, ρ, µ,Jy
read a,JeKρ
ÝÝÝÝÝÝÝÑ

load a1,i
xskip, ρ1, µ,Jy

rLD-Us

JeKρ P r0, |a|q µ1 “ µrpa, JeKρq :“ Je1Kρs

xares :“ e1, ρ, µ, by
write a,JeKρ
ÝÝÝÝÝÝÝÑ

step
xskip, ρ, µ1, by

rSTs

JeKρ R r0, |a|q i P r0, |a1|q µ1 “ µrpa1, iq :“ Je1Kρs

xares :“ e1, ρ, µ,Jy
write a,JeKρ
ÝÝÝÝÝÝÝÑ

store a1,i
xskip, ρ, µ1,Jy

rST-Us

xc1, ρ, µ, by
o
ÝÝÑ
d
xc11, ρ

1, µ1, b1y

xc1; c2, ρ, µ, by
o
ÝÝÑ
d
xc11; c2, ρ

1, µ1, b1y
rSEQs

xc1, ρ, µ, by
o
ÝÝÑ
d
xskip, ρ1, µ1, b1y

xc1; c2, ρ, µ, by
o
ÝÝÑ
d
xc2, ρ

1, µ1, b1y
rSEQ-SKIPs

xif t then cJ else cK, ρ, µ, by
branch JtKρ
ÝÝÝÝÝÝÝÑ

step
xcJtKρ , ρ, µ, by

rIFs

xif t then cJ else cK, ρ, µ, by
branch JtKρ
ÝÝÝÝÝÝÝÑ

force
xc JtKρ , ρ, µ,Jy

rIF-Ss

cK “ skip cJ “ c;while t do c

xwhile t do c, ρ, µ, by
branch JtKρ
ÝÝÝÝÝÝÝÑ

step
xcJtKρ , ρ, µ, by

rWHs

cK “ skip cJ “ c;while t do c

xwhile t do c, ρ, µ, by
branch JtKρ
ÝÝÝÝÝÝÝÑ

force
xc JtKρ , ρ, µ,Jy

rWH-Ss

xx :“declassify e, ρ, µ, by
decl JeKρ
ÝÝÝÝÝÑ

step
xskip, ρrx :“ JeKρs, µ, by

rDECLs

xfence, ρ, µ,Ky
‚

ÝÝÑ
step

xskip, ρ, µ,Ky
rFENs

Figure 2: One-step (adversarial) semantics.

Lemma 2. If $ c is declassify-free and pρ1, µ1q „ pρ2, µ2q

and xc, ρ1, µ1y ó
O1 and xc, ρ2, µ2y ó

O2 then O1 “ O2.

Lemma 2 states that if two executions have low-equivalent
initial states—i.e., that they agree on all public values—then
they will have identical sequential observation traces. An
attacker thus cannot recover any secret information. However,
under speculative execution, this no longer holds: even if a
program is well-typed, an attacker can force the program down

5

Typing

Γpeq ď Γpxq

Γ $ x :“ e
rASSIGNs

Γpeq “ L Γpaq ď Γpxq

Γ $ x :“ ares
rLDs

Γpeq “ L Γpe1q ď Γpaq

Γ $ ares :“ e1
rSTs

Γptq “ L Γ $ c1 Γ $ c2

Γ $ if t then c1 else c2
rIFs

Γptq “ L Γ $ c

Γ $ while t do c
rWHs

Γ $ c1 Γ $ c2

Γ $ c1; c2
rSEQs

Γpxq “ L

Γ $ x :“declassify e
rDECLs

Figure 3: Standard constant-time typing with declassification.

misspeculated paths to reveal secret information.
We present one such example, the classic Spectre-PHT attack,

in Listing 2. Sequentially, this program can only access (and
leak) the public values from array. However, if the attacker
controls the value of index to be out-of-bounds, but forces
the branch on line 3 to misspeculate, they can retrieve any
arbitrary value from memory—including secret values from
elsewhere in the program.

A more subtle problem is that attackers can cause unintended
declassification, as seen in Listing 1. Sequentially, the masking
result c is declassified only after being properly masked. Even
though this result is leaked via the access to table, the
attacker normally only learns the final obfuscated value. How-
ever, if the attacker forces the loop condition to misspeculate
(and thus skip the loop body entirely), the result c that gets
declassified and leaked is exactly the original secret input m.

V. RELATIVE NON-INTERFERENCE

Broadly speaking, it is a standard practice to model security
policies as information-flow policies. These policies can be
direct or relative—direct policies require that related executions
yield equal leakage, whereas relative policies instead require
that related executions in one setting do not leak more than
related executions in another setting [17]. Direct policies offer
stronger guarantees than relative policies, but cannot always
be achieved.

In the classic sequential setting, most security policies
enforce non-interference; informally, non-interference states
that an attacker cannot distinguish between two executions of
the same program that use the same public inputs but possibly
different secret inputs. However, simple non-interference does

not hold for programs that use declassification. Notions such as
robust declassification [54] extend non-interference to handle
these cases: Intuitively, robust declassification states that passive
attackers do not learn more than active attackers. Robust
declassification is an instance of a relative policy, i.e., it
compares leakage in two execution scenarios.

Because our language includes declassification, we frame
our own security policy as a relative property—concretely, we
evaluate the speculative security of a program relative to its
sequential behavior: During speculative execution, a program
should not reveal more information to an attacker than it would
have sequentially. We formalize this property as relative non-
interference (RNI).

A. Relative non-interference

We define relative non-interference (RNI) as a relative
policy which contrasts the speculative and sequential leakage
observations of a program. Our notion is inspired by prior
speculative non-interference properties [17, 27] and is a form
of robust declassification [54] in the speculative domain.

Definition 2. A program c is RNI iff for every pair of executions
xc, ρ1, µ1,Ky ó

O1

D and xc, ρ2, µ2,Ky ó
O2

D such that pρ1, µ1q „

pρ2, µ2q we have:

O˚1 “ O˚2 ùñ O1 “ O2

where xc, ρ1, µ1,Ky ó
O˚1
D˚ (resp. O˚2) and D˚ is the longest

prefix of D that does not contain the directive force.

Formally, RNI requires that for every set of directives D and
every two executions of c from equivalent states, equality of
leakage until the first force directive—the directive that triggers
misspeculation—entails equality of leakage for the complete
execution.

As we see in Listings 1 and 2, well-typed programs can still
fail to satisfy RNI. However, given a well-typed program c, we
can transform it into a sequentially equivalent program c1 that
does satisfy RNI: Under sequential execution, c1 will produce
the same output and the same sequence of observations as c.
We formalize the transformation in two steps: We first define
an idealized semantics and show that well-typed programs
satisfy RNI under this idealized semantics. Then, we show
that the idealized semantics can be implemented by a program
transformation.

B. Idealized semantics

The idealized semantics protects instructions that would spec-
ulatively leak secrets—namely, declassify and load instructions.
We find, however, that loads that already operate on secret
arrays (i.e., Γpaq “ H) do not need to be protected: Even under
adversarial misspeculation, they will continue to load secret
values into secret registers. Therefore, the idealized semantics
only differs from the original semantics in the following two
ways:
‚ Public loads: The target register is updated with a default

value when the speculation flag is set to true.

6

‚ Declassify: The target register is updated with a default
value when the speculation flag is set to true.

JeKρ P r0, |a|q ρ1 “ ρrx :“ µrpa, JeKρqss

xx :“ ares, ρ, µ,Ky
read a,JeKρ
ÝÝÝÝÝÝÝá

step
xskip, ρ1, µ,Ky

rLDs

Γpaq “ H JeKρ R r0, |a|q
i P r0, |a1|q ρ1 “ ρrx :“ µrpa1, iqss

xx :“ ares, ρ, µ,Jy
read a,JeKρ
ÝÝÝÝÝÝÝá

load a1,i
xskip, ρ1, µ,Jy

rLD-Us

Γpaq “ L ρ1 “ ρrx :“ 0s

xx :“ ares, ρ, µ,Jy
read a,JeKρ
ÝÝÝÝÝÝÝá

step
xskip, ρ1, µ,Jy

rLD-PROTs

ρ1 “ ρrx :“ JeKρs

xx :“declassify e, ρ, µ,Ky
decl JeKρ
ÝÝÝÝÝá

step
xskip, ρ1, µ,Ky

rDECLs

ρ1 “ ρrx :“ 0s

xx :“declassify e, ρ, µ,Jy
decl 0
ÝÝÝá
step

xskip, ρ1, µ,Jy
rDECL-PROTs

Figure 4: Selected rules for idealized semantics.

We formalize the idealized semantics in Figure 4 with
a new step relation xc, ρ, µ, by

o
Ýá
d

xc1, ρ1, µ1, b1y and we
write complete executions of the idealized semantics as
xc, ρ, µ, by ÛO

D xc1, ρ1, µ1, b1y. As before, we omit b and D
when considering a sequential execution of the program.

We now show the equivalence of the original and idealized
semantics:

Lemma 3 (Equivalence of sequential semantics). Well-typed
programs have equivalent leakage and functional behavior
under both semantics:

xc, ρ, µy óO xc1, ρ1, µ1y iff xc, ρ, µy ÛO xc1, ρ1, µ1y.

The proof of the lemma is by inspection of the semantic
rules for single-step execution followed by induction on the
length of the complete execution.

Next, we show that well-typed programs are RNI under
idealized semantics:

Proposition 1 (RNI with idealized semantics). If $ c then c
is RNI when executed with the idealized semantics.

The lemma is derived from two unwinding lemmas [41].
The unwinding lemma for sequential execution considers two
single-step executions with the same directive and observation
and shows preservation of equivalence for register maps and
memories.

Lemma 4 (Unwinding lemma for sequential execution). Let
d “ step, force. If $ c, then for every pair of execution steps:

xc, ρ1, µ1,Ky
o1
Ýá
d
xc11, ρ

1
1, µ

1
1, b

1
1y

xc, ρ2, µ2,Ky
o2
Ýá
d
xc12, ρ

1
2, µ

1
2, b

1
2y

we have:

pρ1, µ1q „ pρ2, µ2q ^ o1 “ o2

ùñ pρ11, µ
1
1q „ pρ

1
2, µ

1
2q ^ c

1
1“c

1
2 ^ b

1
1“b

1
2.

Proof. See Appendix A.

The unwinding lemma for speculative execution considers
two executions with the same directive and shows preservation
of equivalence for register maps and observations.

Lemma 5 (Unwinding lemma for idealized speculative execu-
tion). If $ c then for every pair of execution steps:

xc, ρ1, µ1,Jy
o1
Ýá
d
xc11, ρ

1
1, µ

1
1,Jy

xc, ρ2, µ2,Jy
o2
Ýá
d
xc12, ρ

1
2, µ

1
2,Jy

we have:

ρ1„ρ2 ùñ o1“o2 ^ ρ
1
1„ρ

1
2 ^ c

1
1“c

1
2

Proof. See Appendix A.

Proof of Proposition 1. W.l.o.g. D “ stepn :: force :: D1 and
we can decompose the two executions as:

xc, ρ1, µ1,Jy
O1:o1
ÝÝÝá
D1
Ýá xc11, ρ

1
1, µ

1
1,Ky

O11
ÝÝá
D2
Ýá xfence, ρ11, µ

1
1,Ky

xc, ρ2, µ2,Jy
O2:o2
ÝÝÝá
D1
Ýá xc12, ρ

1
2, µ

1
2,Jy

O12
ÝÝá
D2
Ýá xfence, ρ12, µ

1
2,Ky

where D1 “ stepn :: force and D “ D1 :: D2. Assume that
O1 “ O2. By repeated applications of Lemma 4, it follows that
the instructions and the memories before executing the force
step are equivalent. Since force executes on a public branching
instruction, the two force steps leak the same observations,
i.e., o1 “ o2 and hence by one final application of Lemma 4
we conclude that c11 “ c12 and that pρ11, µ

1
1q „ pρ12, µ

1
2q. By

repeated applications of Lemma 5, we conclude that O11 “ O12,
and hence O1 :: o1 :: O11 “ O2 :: o2 :: O12, as desired.

C. Program transformation

To implement the idealized semantics, we define a concrete
program transformation LcM. We present the transformation
rules in Figure 5. Our transformations make the misspeculation
flag b concrete, instrumenting programs to track its value in
a (unique) architectural register b̃. In particular, we update b̃
when entering a branch or a loop body and after exiting a
loop. We use b̃ to implement the selective SLH and masked
declassify countermeasures, which respectively protect memory
loads and declassification statements.

SelSLH, or selective speculative load hardening, masks
the results of public memory loads against b̃. Hence if b̃ is
J—i.e., the program has misspeculated—then the result of
the load becomes 0. However, selSLH explicitly does not
transform secret loads; this is an improvement over speculative
load hardening (SLH), which masks all loads. SelSLH is
particularly relevant for cryptographic programs, since such
programs mainly operate on secret data. Since selSLH only
masks the public loads and ignores the secret loads, it drastically
reduces the number of mitigations inserted to protect most

7

Lx :“ eM “ x :“ e
Lares :“ e1M “ ares :“ e1

Lx :“ aresM “ x :“ ares;x :“ b̃ : 0?x , Γpxq “ L
Lx :“ aresM “ x :“ ares , Γpxq “ H

Lx :“declassify eM “ x :“ e;x :“ b̃ : 0?x

Lif t then c1 else c2M “ if t then pb̃ :“ t?b̃ : J; Lc1Mq else pb̃ :“ t?J : b̃; Lc2Mq
Lwhile t do cM “ while t do pb̃ :“ t?b̃ : J; LcMq; b̃ :“ t?J : b̃

Lc1; c2M “ Lc1M; Lc2M

Figure 5: Selective SLH and masked declassification countermeasures. Transformation of loads is predicated on the type of x.

cryptographic programs. We present some preliminary results
of the potential savings in Section VI-C.

Masked declassification simply masks the results of declas-
sification against b̃. Just as with selSLH, if the program has
misspeculated, the result of the operation becomes 0.

Finally, we prove that our transformation properly imple-
ments the idealized semantics: Given a program c, the ideal
execution of c agrees with the execution of the transformed
program LcM. We leave the formal definition of agreement to
the appendix (as Lemma 7) and state the correctness in a
simplified form:

Lemma 6 (Implementation of idealized semantics, simplified).
The following are equivalent:

‚ xc, ρ, µ, by ÛO
D xc

1, ρ1, µ1, b1y

‚ xLcM, ρrb̃ :“ bs, µ, by óOD xc
1, ρ1rb̃ :“ b1s, µ1, b1y

The lemma is proved by induction on the length of execution.
Although we focus on selSLH and masked declassification,

in practice developers may be forced to fall back to alternatives.
In particular, without compiler support for public/secret type
information, we must conservatively mask every array access.
Similarly, it is not feasible to implement masked declassification
without proper compiler support. In this case, we can instead
use fenced declassification: Instead of masking the result of
declassification, we insert a fence instruction before each declas-
sify statement—since fences prevent misspeculated execution
from proceeding, unintended values cannot be declassified.

These alternative countermeasures are still sound: We
can easily define an corresponding idealized semantics and
transformation for each combination of countermeasures; the
proofs of these countermeasures proceed in exactly the same
way. However, these alternative countermeasures have a higher
performance overhead, as we see in our evaluation.

VI. IMPLEMENTATION AND EVALUATION

We evaluate the performance of SLH and fenced declas-
sification using FaCT [15], a domain-specific framework for
writing efficient constant-time cryptographic routines. FaCT is
an ideal target for implementing our countermeasure: First, the
FaCT language already supports information-flow typing and
declassify statements; second, the FaCT compiler is built on
LLVM compiler infrastructure, which already supports SLH;

Table I: Case study summary: Lines of code in FaCT and uses
of declassify (#D).

Case study LoC #D

libsodium secretbox 1068 1
curve25519-donna-c64 342 1
OpenSSL record validate 91 1
OpenSSL MEE-CBC 219 1

and third, FaCT offers formal guarantees which blend in nicely
with our approach.

A. FaCT implementation

FaCT [15] is a framework for writing efficient constant-
time code. The framework consists of two components: The
FaCT language, a domain-specific language supported by an
information-flow type system; and the FaCT compiler, which
generates efficient constant-time code. In order to ease pro-
gramming, the type system of the FaCT language is permissive
towards secret-dependent control flow—instead, FaCT relies
on type-directed transformations to remove potential timing
leaks. These transformations yield programs typable in a type
system similar to the one from Figure 3; the resulting programs
are converted to LLVM IR, which is assembled by Clang.

The FaCT distribution includes ports of code from several
well-known open-source cryptographic libraries, including the
NaCl secretbox functions [11] from libsodium [20], a user-
friendly high-speed cryptographic library; Curve25519 donna-
c64 [31], an elliptic-curve Diffie-Hellman function introduced
by Bernstein [10]; OpenSSL [38] ssl3_cbc_digest_record
function which verifies the SSLv3 decrypted messages; and
OpenSSL [38] aesni_cbc_hmac_sha1_cipher function which is
called in MAC-then-Encode-then-CBC-Encrypt (MEE-CBC).
These functions exercise all of the language features of FaCT,
cover a broad range of algorithms, and showcase the use
of FaCT in different settings, from implementing individual
procedures to large portions of libraries [15]. We provide an
indication of the size of each port and of number of declassify
statements in Table I.

Implementing SLH and fenced declassification required two
modifications to the FaCT compiler:
‚ We modified code generation to insert a fence instruction

before each declassification. Concretely, our implementa-

8

Figure 6: Overhead of SLH, SLH+Fence compared to regular
FaCT in Curve25519 donna-c64 and libsodium’s secretbox

Figure 7: Overhead of SLH, SLH+Fence compared to regular
FaCT in OpenSSL operations

tion inserts the llvm.x86.sse2.lfence LLVM intrinsic before
changing the security label.

‚ We upgraded FaCT’s backend to LLVM 11 to make use of
LLVM’s -mspeculative-load-hardening option.

B. Performance evaluation

Our performance evaluation uses the case studies from FaCT
distribution. We apply the following changes to these examples:
‚ Instead of measuring the average over many executions of

the same routine as in [15], we measure individual executions
and report median and quartiles. This is a standard practice
to eliminate outliers due to system interrupts.

‚ Benchmarking much faster pieces of code requires a higher-
resolution timer than the one used in the FaCT distribution;
we use the CPU’s built-in cycle counter.

‚ We declassify the output of Curve25519 and secretbox
encryption. This is not required by the FaCT type system, but
it reflects that output of Curve25519 public-key generation
and of authenticated encryption are public and considered
safe to be leaked by the caller.
We ran benchmarks of these artifacts with unmodified FaCT,

FaCT with LLVM’s SLH enabled, and with FaCT with both
SLH and the fenced declassify modification. We used a machine
with an Intel i7-9700K CPU and 64GB RAM; this CPU does
not feature hyperthreading and we disabled the TurboBoost
feature for consistency. We present our results in Figures 6
and 7 and we report the absolute cycle counts in Table II. We
find that the overhead introduced by SLH is significant, but
the additional overhead introduced by fenced declassification
is very small: In cryptographic software, declassification is
required, although rare, and usually only upon the final output.
The OpenSSL benchmarks in Figure 7 show a smaller overhead
compared to the libsodium benchmarks in Figure 6; this is
because the OpenSSL benchmarks are much less CPU-bound.

C. Performance of selSLH

Implementing selSLH requires major changes to the LLVM
compiler—including implementing a security type system for
the LLVM IR—and is out of scope of this paper. However,
in order to obtain a preliminary understanding of the benefits
of selective SLH, we analyze implementations of two widely
used cryptographic primitives: The reference implementation
of ChaCha20 by Bernstein, as an example of a primitive
that has a public variable input length; and the donna-
c64 implementation by Langley of scalar multiplication on
Curve25519, as an example of a primitive with all inputs and
outputs of fixed length. We compiled both implementations with
gcc-10.2 and optimization flags -fomit-frame-pointer
-march=native on a machine with an Intel i7-6500U CPU.

For our evaluation, we modify the Pitchfork analysis
tool [16], which uses symbolic execution to verify binaries for
sequential (and speculative) constant-time. More importantly
for us, Pitchfork propagates the security types of values through
execution when given the initial types of inputs and global
data. We instrument Pitchfork to classify and count each load
it encounters during sequential execution.

With selSLH, the security type of inputs has a direct impact
on performance—secret inputs will not have mitigations applied.
Thus, for our evaluation, we declare all inputs to be secret
unless they must be public to be well-typed (i.e., values are
sequentially leaked). For example, while the fixed basepoint
of Curve25519 in the donna-c64 implementation is public in
principle, declaring it as secret is not unsound, and results in
fewer public loads (and thus gives better performance with
selSLH).

We present our results in Table III—our experiments show
that for typical cryptographic code, we can indeed safely and
soundly omit the majority of SLH protections. In the ChaCha20
implementation, for example, nearly 80% of the loads are
for secret data, and thus need not be protected by SLH; the
remaining loads access public pointers and loop counters spilled

9

Table II: Benchmarks summary: Lower quartile, median, and upper quartile for each implementation.

Implementation Cpucycle counts: P25, P50, P75

FaCT (plain) FaCT w/ SLH FaCT w/ SLH+Fence

donna 1.96e5 1.96e5 1.96e5 2.13e5 2.13e5 2.13e5 2.13e5 2.13e5 2.13e5
secretbox ref enc 2.03e3 2.03e3 2.03e3 2.20e3 2.20e3 2.20e3 2.23e3 2.23e3 2.23e3
secretbox ref dec 2.93e3 2.93e3 2.93e3 3.12e3 3.12e3 3.12e3 3.14e3 3.14e3 3.15e3
secretbox vec enc 1.93e3 1.93e3 1.94e3 2.04e3 2.04e3 2.04e3 2.07e3 2.07e3 2.07e3
secretbox vec dec 2.83e3 2.83e3 2.83e3 2.97e3 2.97e3 2.97e3 2.98e3 2.98e3 2.98e3
mee 256mb 2.31e9 2.31e9 2.31e9 2.31e9 2.31e9 2.31e9 2.32e9 2.33e9 2.33e9
mee 1gb 9.22e9 9.23e9 9.23e9 9.25e9 9.27e9 9.29e9 9.32e9 9.34e9 9.37e9
mee 4gb 3.68e10 3.69e10 3.69e10 3.70e10 3.70e10 3.71e10 3.71e10 3.72e10 3.73e10
ssl3 256mb 3.09e9 3.10e9 3.10e9 3.09e9 3.10e9 3.10e9 3.11e9 3.12e9 3.12e9
ssl3 1gb 1.23e10 1.23e10 1.24e10 1.24e10 1.24e10 1.24e10 1.24e10 1.24e10 1.25e10
ssl3 4gb 4.95e10 4.95e10 4.96e10 4.95e10 4.96e10 4.96e10 4.98e10 4.99e10 4.99e10

Table III: Counts of public and secret loads of various
cryptographic programs. We report the percentage reduction
of mitigations that selective SLH would provide as compared
to traditional SLH.

Impl. # public # secret # total SLH saved

ChaCha20 (512 B) 192 766 958 79.96%
ChaCha20 (1024 B) 384 1,518 1,902 79.81%
donna-c64 2,054 43,663 45,717 95.51%

to the stack (and must remain protected). For the donna-c64
implementation of Curve25519, the savings reach more than
95%—selSLH is able to remove nearly all SLH protections.

VII. CASE STUDY: AES

Section V demonstrates that interactions between declas-
sification and speculative execution may breach the security
guarantee of a program. In this section we demonstrate some
of the risks that this may cause in realistic scenarios. We inves-
tigate declassification in the common case of AES encryption,
where declassification is required to allow transmitting the
ciphertext. We demonstrate that due to speculative execution,
the ciphertext may be declassified too early leading to disclosure
of an improperly encrypted message. We leave a description
of how to recover a key from such messages to Appendix B.

More specifically, we look at an implementation of AES
written in FaCT that uses the AES-NI instruction set to perform
the encryption rounds. Successive rounds are implemented as
straight-line code with two branches that exit early after ten
or twelve rounds to allow for the different key lengths of
AES. We further look at two implementations that are part
of OpenSSL, the default implementation, which uses AES-NI,
and a machine-independent version that uses T-tables. Before
describing our attack, we present a short refresher on the AES
encryption.

A. AES Background

The Advanced Encryption Standard (AES) is a symmetric
block-cipher, operating on 128-bit block size using keys of size
128, 192, or 256 bits. AES follows a substitution-permutation

network design whose construction consists of multiple rounds
to produce a ciphertext.

AES Round Overview. The 128-bit AES state is written as
a 4 ˆ 4 byte matrix and in each round transformed through
4 operations: SubBytes, ShiftRows, MixColumns and Add-
RoundKey. The final round (10, 12, or 14 depending on the key
size) does not perform MixColumns. The SubBytes operation
replaces each byte by another byte according to a predefined
lookup table. ShiftRows circularly rotates row i to the left
by i. MixColumns is a linear transformation of the columns
with bytes interpreted as elements of GFp28q. AddRoundKey
performs an exclusive-or with a round key. Note that SubBytes
is the only non-linear transformation.

AES-NI. The Advanced Encryption Standard instruction
set (AES-NI) is an extension of the x86-64 instruction set,
which implements the steps of the AES encryption. It offers
both better performance and enhanced security than software
implementations. For AES encryption, AES-NI supports two
main instructions: AESENC, which performs a full AES round
consisting of SubBytes, ShiftRows, MixColumns, and Add-
RoundKey, and AESENCLAST, which performs SubBytes,
ShiftRows, and AddRoundKey for the last round.

B. PoC Attack Overview

The high-level idea behind the attack is to train the branch
prediction unit (BPU) to speculatively exit the AES implemen-
tation after performing fewer rounds than required. We flush
the key length from the cache then invoke the encryption. The
BPU predicts which branches to take in the implementation
and by extension predicts how many rounds to apply. Because
it takes time for the processor to retrieve the key length from
the memory, the processor does not immediately detect the
misprediction, allowing the code to return speculatively to
the attacker, who then leaks the ciphertext via a cache-based
covert channel. At some later time, the processor retrieves the
correct number of rounds and squashes all of the mispredicted
execution, including any later execution of the attacker. It
then restarts execution from the first mispredicted branch,
completing the correct number of rounds. However, squashing
instructions does not revert any changes made to the cache.
This allows an attacker to measure the state of the cache using

10

the FLUSH+RELOAD attack [53] and retrieve the partially
encrypted ciphertext.

C. PoC Attack on AES

We begin with a description of our PoC attack on Listing 3.
The aes_round and aes_final_round functions are
backed by compiler intrinsics that replace the functions with the
AESENC and AESENCLAST instructions. The key variable
contains the full key expansion along with the number of
rounds that needs to be performed.
Step 1: Branch Predictor Training. Our goal in this attack is
to train the branch history buffer, which predicts the conditions
of conditional branches, to abort the encryption early, allowing
the attacker to leak the ciphertext for a reduced-round AES
that can be cryptanalyzed to recover the key. Listing 4 shows
the pseudocode of the attack. It starts by creating two keys,
one which trains the BPU and one which emulates a secret
key the attacker does not have access to. We repeatedly call
encrypt using the training key, training the BPU to predict
false for the condition on line 17 in Listing 3. This causes
encrypt to exit after applying ten rounds. We note that in
practice, an attacker can use other means to train the BPU. In
particular, the attacker can rely on aliasing in the BPU, using
a branch that the attacker controls to train prediction within
encrypt.
Step 2: Triggering Misspeculation. After training the branch
predictor, we flush the field key.rounds from the cache. The
field controls the branches on lines 17 and 20 of Listing 3
which control the number of rounds to apply. Thus, flushing
it from the cache delays the evaluation of these branches
until the field is retrieved from memory. Until that time, the
processor uses the false prediction for the condition on
line 17, as trained earlier, and proceeds speculatively along the
mispredicted execution path. This delay is necessary to allow
the speculative execution to perform the final round (Listing 3,
line 25) and return to the attacker code, which leaks the round-
reduced ciphertext through a microarchitectural side channel
(Listing 4, line 12). Eventually, the processor will retrieve
key.rounds from the memory, perform the comparisons for
the conditions, detect that the branch was mispredicted, squash
the ensuing speculative execution, and resume execution with
the correct true condition in line 17. However, by this time,
the reduced-round ciphertext has already leaked through the
side channel.
Step 3: Recovering the Reduced-Round Ciphertext. Finally,
execution once again returns from encrypt and control flows
to sidechannel_recv. This function acts as the receiver
of the side channel and receives the reduced-round ciphertext
from the transiently executed sidechannel_send. We im-
plement sidechannel_recv using FLUSH+RELOAD [53],
a cache side-channel that can determine if a particular address
has been accessed. We leak the incorrect ciphertext one byte at a
time, by selecting a byte and using it to access a 256-page array.
We can then check which of the 256-pages has been accessed
to recover one byte of the reduced-round ciphertext from the

previously squashed execution. This process is repeated for
each of the 16 bytes of the reduced-round ciphertext. We note
that multiple side channels have been demonstrated in the
context of transient-execution attacks [4, 12, 24, 40], and the
choice of channel is not limited to FLUSH+RELOAD.

Attack Accuracy. We test two victims. The first uses a
default LLVM back-end for code generation and the second
uses LLVM with SLH enabled. We repeat the attack 1 000 times
with each victim, each time recording whether the reduced-
round ciphertext is recovered correctly. On average the attack
succeeds with a probability of 95% irrespective of the victim.

D. PoC Attack on OpenSSL AES

We further demonstrated leakage from two AES implemen-
tations provided in OpenSSL. The first implementation uses
T-tables for implementing the round function and the second
uses AES-NI. The T-table implementation follows the same
general structure of the FaCT implementation in Listing 3, but
uses precomputed tables for performing the round function.
The T-table implementation is known to be vulnerable to cache
attacks [36], but our PoC does not exploit this vulnerability.
Instead, we use the same strategy as in Listing 4, recovering
the round-reduced ciphertext. When SLH is disabled, the PoC
works as expected. Enabling SLH prevents the leak because
SLH poisons the table accesses executed in the last round.

The second implementation we test is the default OpenSSL
implementation for computers that support AES-NI. The
implementation, which is written in x86-64 assembly, uses the
AESENC instruction in a loop, and then invokes AESENCLAST
for the last round. To determine the number of iterations,
the implementation uses the value of key.rounds. Our
PoC trains the loop to stop after one iteration, resulting in
a two-round encryption. We only test this implementation
without SLH, because LLVM SLH does not apply to assembly
code. Appendix B describes how to recover the key from the
information we obtain.

E. Attack Practicality

The proof-of-concepts we present in this section serve
to show that ignoring declassification can result in leakage
from otherwise protected code. Several aspects may make our
attacks difficult in practice. Specifically, while intra-process
isolation is an active research area [29, 48, 50], some real-world
applications seem to be moving in the opposite direction [39].
To perform the attack across process boundaries, the attacker
will have to overcome branch predictor flushing in modern
processors and to find a leaky gadget that leaks the mispredicted
declassified values. The former could be achieved through
confused deputy attacks [6] and the latter through automated
search of vulnerable gadgets [12]. We leave implementing these
to future work.

11

1 export void unrolled_fact (secret uint64[2] plaintext,
2 public mut uint64[2] ciphertext, mut AES_KEY key) {
3 secret mut uint64<2> state = load_le(plaintext);
4 secret mut uint64<2> rd_key = load_le(view(key.rd_key, 0, 2));
5 public uint32 rounds = uint32(key.rounds);
6 assume(rounds < 15);
7 state = state ^ rd_key; rd_key = load_le(view(key.rd_key, 2, 2));
8 state = aesenc(state, rd_key); rd_key = load_le(view(key.rd_key, 4, 2));
9 state = aesenc(state, rd_key); rd_key = load_le(view(key.rd_key, 6, 2));

10 state = aesenc(state, rd_key); rd_key = load_le(view(key.rd_key, 8, 2));
11 state = aesenc(state, rd_key); rd_key = load_le(view(key.rd_key, 10, 2));
12 state = aesenc(state, rd_key); rd_key = load_le(view(key.rd_key, 12, 2));
13 state = aesenc(state, rd_key); rd_key = load_le(view(key.rd_key, 14, 2));
14 state = aesenc(state, rd_key); rd_key = load_le(view(key.rd_key, 16, 2));
15 state = aesenc(state, rd_key); rd_key = load_le(view(key.rd_key, 18, 2));
16 state = aesenc(state, rd_key); rd_key = load_le(view(key.rd_key, 20, 2));
17 if (rounds > 10) {
18 state = aesenc(state, rd_key); rd_key = load_le(view(key.rd_key, 22, 2));
19 state = aesenc(state, rd_key); rd_key = load_le(view(key.rd_key, 24, 2));
20 if (rounds > 12) {
21 state = aesenc(state, rd_key); rd_key = load_le(view(key.rd_key, 26, 2));
22 state = aesenc(state, rd_key); rd_key = load_le(view(key.rd_key, 28, 2));
23 }
24 }
25 state = aesenclast(state, rd_key);
26 store_le(ciphertext, declassify(state));
27 }

Listing 3: FaCT implementation of unrolled AES encryption. The aesenc and aesenclast functions are compiler intrinsics
that map to the AESENC and AESENCLAST x86 instructions.

1 function attack() {
2 training_key = create_aes128_key();
3 secret_key = create_aes192_key();
4

5 for (int i = 0; i < 127; i++) {
6 encrypt(plaintext, training_key);
7 }
8

9 flush(secret_key.rounds);
10 ciphertext = encrypt(plaintext, secret_key);
11

12 sidechannel_send(ciphertext);
13

14 return sidechannel_recv();
15 }

Listing 4: Pseudocode of our attack on AES. For clarity, we
show training and victim execution as separate steps. In practice,
our code does both of these steps in the same loop, using
constant-time select to switch between inputs.

VIII. RELATED WORK

Robust Declassification. Relative non-interference is closely
related to robust declassification [54].2 Robust declassifica-
tion requires that active attackers—formalized as adversarial
transition steps—do not observe any more information from
a program than passive attackers. Although the definition of
robust declassification predates Spectre attacks by nearly two
decades, it can be instantiated to our setting: The labeling of
registers and arrays in our setting corresponds to their lattice

2“Declassification” in their setting corresponds to all leakages—not just
decl observations—in ours.

of security domains, and their equivalence classes of states
at each transition step are represented by our sequences of
observations O. Passive attackers correspond to sequential
executions limited to step transitions, while active attackers
correspond to speculative executions governed by adversarial
directives d P Dir. Under this framework, robust declassification
states that if the sequential execution of any two initial
states produces equivalent observations, then the speculative
traces must produce equivalent observations as well. Our
definition of RNI only depends on the sequential prefix of
the speculative traces rather than a full sequential trace;
Lemma 8 in Appendix A shows that our notion is stronger than
the alternative 4-executions notion which considers two full
sequential execution traces and two full speculative execution
traces.

Information Flow and Constant-time. There is a significant
body of work on information flow and declassification, see
e.g., [42, 44]. Sabelfeld and Myers [43] introduce delimited
information release, and show how it can be enforced by a
classic information-flow type system. We model security of
countermeasures in a spirit that is close to delimited release.
However, their formal definition only considers sequential
semantics, whereas our definition contrasts sequential and
speculative semantics. In addition, we reason about leakage,
whereas (as is common for information-flow type systems)
they reason about equality of outputs.

There is a growing body of work that uses type systems and
static program analyses to enforce that programs are constant-
time; see [7] for a recent survey. However, these works either do
not consider or do not provide guarantees for declassification.

12

The only exception is [3], which supports public outputs.
Public outputs are a form of declassification that is required
by cryptographic libraries, e.g., to leak the length of a string.
However, [3]’s focus on declassification is complementary to
ours: they show how to relax the verification algorithm so that
leaks that do not reveal more than the public output are not
considered insecure; their relaxation allows for more efficient
code to be written. Our work provides instead a means to protect
against unintended leakage caused by speculative execution.
Speculative Semantics. There is a growing body of work
that applies language-based techniques to reason about security
under speculative execution; see [17] for a recent survey.
Our adversarial semantics is inspired by [16] and by [9];
however, we refine their adversarial directives: Attackers
in their semantics explicitly specify which direction each
branch speculates, e.g., with directives like force J, and so
may not always misspeculate. In contrast, our force directive
always takes the incorrect branch, letting us easily delineate
misspeculated execution and simplify our proofs. In addition,
our semantics differs from [9] in its treatment of unsafe
memory accesses: Indeed, the semantics of [9] immediately
aborts execution and leaks the complete memory whenever an
unsafe access is performed. Their semantics is thus too coarse
for reasoning about the security of our countermeasure (or
speculative load hardening). In contrast, our semantics resolves
unsafe memory accesses with adversarial directives.

Prior semantics serve as the basis for defining security
of applications under speculative execution. These specula-
tive security properties fall into two categories: Direct and
relative properties [17]. Direct notions, such as speculative
constant-time [16], are specified as 2-trace non-interference
hyperproperties, and prevent (explicitly typed) secret data from
leaking to an attacker. Relative notions, such as speculative
non-interference (SNI) [27] and trace property-dependent
observational determinism (TPOD) [19] instead simply prevent
an attacker from learning more information than they would
sequentially. These properties are thus typically specified in
terms of four traces—two speculative traces for the leakage
trace of the program, and two sequential traces to determine
the baseline leakage to compare against. Our security property,
RNI, is also a form of relative property; however, we require
only two execution traces in our definition. As a result, it is
stronger than 4-trace properties such as SNI: If a program
satisfies RNI then it satisfies SNI. In addition, RNI explicitly
handles declassification; we are not aware of any prior work
that explicitly connects relative notions with declassification.

Blade [49] is an automated tool that eliminates speculative
leaks via hardening loads or inserting fences. Their approach
views secret inputs as sources and observations as sinks, and
applies classic graph algorithms to infer where protections
must be inserted. Their approach is evaluated on WebAssembly
implementations of cryptographic algorithms.

Patrignani and Guarnieri [37] study the security impact of
compiler transformations and countermeasures in a model of
speculative execution. They propose two criteria, called robust
speculative safety (RSS) and robust speculative non-interference

(RSNI), and evaluate proposed (both theoretical and deployed)
countermeasures w.r.t. these criteria. One main difference
with our work is that they emphasize robust compilation, i.e.,
properties that are preserved even when the program is linked
with arbitrary code. Robustness is an important concern but is
not considered in our work. Another key difference is that our
language features an explicit construct with declassification;
this construct is essential in our setting to capture programmer’s
intent, but not considered in [37].

IX. CONCLUSION

Using AES as a concrete example, we have showed that
speculative execution may leak more information than intended
by programmers, even if programs are protected with SLH.
We have also proposed a countermeasure based on Selective
Speculative Load Hardening (SelSLH) to ensure that programs
do not leak beyond programmer’s intent. Preliminary evalua-
tions suggest that SelSLH is of independent interest and can
drastically reduce the overhead of protecting against Spectre-
PHT. One exciting direction of work is to implement SelSLH in
an existing framework for efficient high-assurance cryptography
and build an efficient, formally verified crypto library that
achieves the guarantees offered by RNI.

ACKNOWLEDGEMENTS

This research was supported by the Air Force Office of
Scientific Research (AFOSR) under award number FA9550-
20-1-0425; an ARC Discovery Early Career Researcher Award
(project number DE200101577); an ARC Discovery Project
(project number DP210102670); the Blavatnik ICRC at Tel-
Aviv University; the CONIX Research Center, one of six
centers in JUMP, a Semiconductor Research Corporation (SRC)
program sponsored by DARPA; the Deutsche Forschungsge-
meinschaft (DFG, German research Foundation) as part of
the Excellence Strategy of the German Federal and State
Governments – EXC 2092 CASA - 390781972; the Euro-
pean Commission through the ERC Starting Grant 805031
(EPOQUE); the National Science Foundation under grant CNS-
1954712; and gifts from AMD, Google, Intel, and Qualcomm.

REFERENCES
[1] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. Predicting

secret keys via branch prediction. In CT-RSA, pages 225–242, 2007. 2,
4

[2] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan,
Cesar Pereida García, and Nicola Tuveri. Port contention for fun and
profit. In IEEE SP, pages 870–887, 2019. 4

[3] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Du-
pressoir, and Michael Emmi. Verifying constant-time implementations.
In USENIX Security, pages 53–70, 2016. URL https://www.usenix.org/
conference/usenixsecurity16/technical-sessions/presentation/almeida. 13

[4] Ben Amos, Niv Gilboa, and Arbel Levy. Spectre without shared memory.
In SAC, pages 1944–1951, 2019. 11

[5] Aslan Askarov, Daniel Hedin, and Andrei Sabelfeld. Cryptographically-
masked flows. In SAS, pages 353–369, 2006. doi: 10.1007/11823230_23.
URL https://doi.org/10.1007/11823230_23. 1

[6] Enrico Barberis, Pietro Frigo, Marius Muench, Herbert Bos, and Cristiano
Giuffrida. Branch history injection: On the effectiveness of hardware
mitigations against cross-privilege Spectre-v2 attacks. In USENIX
Security, 2022. 11

13

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/almeida
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/almeida
https://doi.org/10.1007/11823230_23

[7] Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet,
Cas Cremers, Kevin Liao, and Bryan Parno. Sok: Computer-aided
cryptography. In IEEE SP, pages 777–795, 2021. 12

[8] Gilles Barthe, Gustavo Betarte, Juan Diego Campo, Carlos Daniel Luna,
and David Pichardie. System-level non-interference for constant-time
cryptography. In CCS, pages 1267–1279, 2014. doi: 10.1145/2660267.
2660283. URL https://doi.org/10.1145/2660267.2660283. 4

[9] Gilles Barthe, Sunjay Cauligi, Benjamin Grégoire, Adrien Koutsos, Kevin
Liao, Tiago Oliveira, Swarn Priya, Tamara Rezk, and Peter Schwabe.
High-assurance cryptography in the spectre era. In IEEE SP, pages
1884–1901, 2021. 3, 5, 13

[10] Daniel J. Bernstein. Curve25519: new Diffie-Hellman speed
records. In PKC, pages 207–228, 2006. Document ID:
4230efdfa673480fc079449d90f322c0, http://cr.yp.to/papers.html#
curve25519. 8

[11] Daniel J. Bernstein, Tanja Lange, and Peter Schwabe. The security
impact of a new cryptographic library. In LATINCRYPT, pages 159–176,
2012. http://cryptojedi.org/papers/#coolnacl. 8

[12] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner,
Alessandro Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus.
SMoTherSpectre: Exploiting speculative execution through port con-
tention. In CCS, pages 785–800, 2019. 11

[13] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin
von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel
Gruss. A systematic evaluation of transient execution attacks and defenses.
In USENIX Security, pages 249–266, 2019. 3

[14] Chandler Carruth. Speculative load hardening – a Spectre variant #1
mitigation technique. LLVM documentation. https://llvm.org/docs/
SpeculativeLoadHardening.html. 2

[15] Sunjay Cauligi, Gary Soeller, Brian Johannesmeyer, Fraser Brown, Riad S.
Wahby, John Renner, Benjamin Grégoire, Gilles Barthe, Ranjit Jhala,
and Deian Stefan. FaCT: a DSL for timing-sensitive computation. In
PLDI, pages 174–189, 2019. 1, 5, 8, 9

[16] Sunjay Cauligi, Craig Disselkoen, Klaus von Gleissenthall, Dean M.
Tullsen, Deian Stefan, Tamara Rezk, and Gilles Barthe. Constant-time
foundations for the new Spectre era. In Alastair F. Donaldson and Emina
Torlak, editors, PLDI, pages 913–926, 2020. doi: 10.1145/3385412.
3385970. URL https://doi.org/10.1145/3385412.3385970. 3, 5, 9, 13

[17] Sunjay Cauligi, Craig Disselkoen, Daniel Moghimi, Gilles Barthe, and
Deian Stefan. SoK: Practical foundations for Spectre defenses. 2022. 6,
13

[18] Anirban Chakraborty, Sarani Bhattacharya, Manaar Alam, Sikhar Patran-
abis, and Debdeep Mukhopadhyay. RASSLE: return address stack based
side-channel leakage. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021
(2):275–303, 2021. 2

[19] Kevin Cheang, Cameron Rasmussen, Sanjit Seshia, and Pramod Subra-
manyan. A formal approach to secure speculation. In CSF, 2019. doi:
10.1109/CSF.2019.00027. 13

[20] Frank Denis. libsodium. https://github.com/jedisct1/libsodium. 8
[21] Dmitry Evtyushkin, Dmitry V. Ponomarev, and Nael B. Abu-Ghazaleh.

Jump over ASLR: attacking branch predictors to bypass ASLR. In
MICRO, pages 40:1–40:13, 2016. 2, 4

[22] Cédric Fournet and Tamara Rezk. Cryptographically sound implementa-
tions for typed information-flow security. In POPL, pages 323–335, 2008.
doi: 10.1145/1328438.1328478. URL https://doi.org/10.1145/1328438.
1328478. 1

[23] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A survey of
microarchitectural timing attacks and countermeasures on contemporary
hardware. J. Cryptogr. Eng., 8(1):1–27, 2018. 2

[24] Google. Spectre. https://leaky.page, 2021. 11
[25] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Trans-

lation leak-aside buffer: Defeating cache side-channel protections with
TLB attacks. In USENIX Security Symposium, pages 955–972, 2018. 2

[26] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache template
attacks: Automating attacks on inclusive last-level caches. In USENIX
Security Symposium, pages 897–912, 2015. 2

[27] Marco Guarnieri, Boris Köpf, José F. Morales, Jan Reineke, and Andrés
Sánchez. Spectector: Principled detection of speculative information

flows. In IEEE SP, pages 1–19, 2020. doi: 10.1109/SP40000.2020.00011.
URL https://doi.org/10.1109/SP40000.2020.00011. 3, 6, 13

[28] Jan Jancar, Marcel Fourné, Daniel De Almeida Braga, Mohamed Sabt,
Peter Schwabe, Gilles Barthe, Pierre-Alain Fouque, and Yasemin Acar.
“They’re not that hard to mitigate”: What cryptographic library developers
think about timing attacks. In IEEE SP, 2022. 1

[29] Paul Kirth, Mitchel Dickerson, Stephen Crane, Per Larsen, Adrian
Dabrowski, David Gens, Yeoul Na, Stijn Volckaert, and Michael Franz.
PKRU-Safe: Automatically locking down the heap between safe and
unsafe languages. In EuroSys, 2022. 3, 11

[30] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Exploiting
speculative execution. In IEEE SP, pages 1–19, 2019. 1, 3

[31] Adam Langley. curve25519-donna. https://github.com/agl/curve25519-
donna. 8

[32] Peeter Laud. Semantics and program analysis of computationally secure
information flow. In ESOP, pages 77–91, 2001. doi: 10.1007/3-540-
45309-1_6. URL https://doi.org/10.1007/3-540-45309-1_6. 1

[33] Peeter Laud. On the computational soundness of cryptographically
masked flows. In POPL, pages 337–348, 2008. doi: 10.1145/1328438.
1328479. URL https://doi.org/10.1145/1328438.1328479. 1

[34] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee.
Last-level cache side-channel attacks are practical. In IEEE SP, pages
605–622, 2015. 2

[35] Shravan Narayan, Craig Disselkoen, Daniel Moghimi, Sunjay Cauligi,
Evan Johnson, Zhao Gang, Anjo Vahldiek-Oberwagner, Ravi Sahita,
Hovav Shacham, Dean Tullsen, and Deian Stefan. Swivel: Hardening
WebAssembly against Spectre. In USENIX Security Symposium, August
2021. 3

[36] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and
countermeasures: The case of AES. In CT-RSA, pages 1–20, 2006. 2, 11

[37] Marco Patrignani and Marco Guarnieri. Exorcising Spectres with secure
compilers. In CCS, 2021. https://arxiv.org/pdf/1910.08607.pdf. 3, 13

[38] The OpenSSL Project. openssl. https://github.com/openssl/openssl. 8

[39] Charles Reis, Alexander Moshchuk, and Nasko Oskov. Site isolation:
process separation for web sites within the browser. In USENIX Security,
pages 1661–1678, 2019. 11

[40] Xida Ren, Logan Moody, Mohammadkazem Taram, Matthew Jordan,
Dean M. Tullsen, and Ashish Venkat. I see dead µops: Leaking secrets
via Intel/AMD micro-op caches. In ISCA, pages 361–374, 2021. 11

[41] John Rushby. Noninterference, transitivity, and channel-control secu-
rity policies. Technical report, SRI International, Computer Science
Laboratory, 1992. 7

[42] Andrei Sabelfeld and Andrew C. Myers. Language-based information-
flow security. IEEE J. Sel. Areas Commun., 21(1):5–19, 2003. doi:
10.1109/JSAC.2002.806121. URL https://doi.org/10.1109/JSAC.2002.
806121. 12

[43] Andrei Sabelfeld and Andrew C. Myers. A model for delimited
information release. In ISSS, pages 174–191, 2003. doi: 10.1007/978-3-
540-37621-7_9. URL https://doi.org/10.1007/978-3-540-37621-7_9. 12

[44] Andrei Sabelfeld and David Sands. Declassification: Dimensions and
principles. J. Comput. Secur., 17(5):517–548, 2009. doi: 10.3233/JCS-
2009-0352. URL https://doi.org/10.3233/JCS-2009-0352. 1, 12

[45] Aria Shahverdi, Mahammad Shirinov, and Dana Dachman-Soled.
Database reconstruction from noisy volumes: A cache side-channel attack
on SQLite. In USENIX Security Symposium, 2021. 2

[46] Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser, Pra-
teek Mittal, Yossi Oren, and Yuval Yarom. Robust website fingerprinting
through the cache occupancy channel. In USENIX Security Symposium,
pages 639–656, 2019. 2

[47] Anatoly Shusterman, Ayush Agarwal, Sioli O’Connell, Daniel Genkin,
Yossi Oren, and Yuval Yarom. Prime+Probe 1, JavaScript 0: Overcoming
browser-based side-channel defenses. In USENIX Security Symposium,
2021. 2, 4

[48] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael
Sammler, Peter Druschel, and Deepak Garg. ERIM: secure, efficient

14

https://doi.org/10.1145/2660267.2660283
http://cr.yp.to/papers.html#curve25519
http://cr.yp.to/papers.html#curve25519
http://cryptojedi.org/papers/#coolnacl
https://llvm.org/docs/SpeculativeLoadHardening.html
https://llvm.org/docs/SpeculativeLoadHardening.html
https://doi.org/10.1145/3385412.3385970
https://github.com/jedisct1/libsodium
https://doi.org/10.1145/1328438.1328478
https://doi.org/10.1145/1328438.1328478
https://leaky.page
https://doi.org/10.1109/SP40000.2020.00011
https://github.com/agl/curve25519-donna
https://github.com/agl/curve25519-donna
https://doi.org/10.1007/3-540-45309-1_6
https://doi.org/10.1145/1328438.1328479
https://arxiv.org/pdf/1910.08607.pdf
https://github.com/openssl/openssl
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1007/978-3-540-37621-7_9
https://doi.org/10.3233/JCS-2009-0352

in-process isolation with protection keys (MPK). In USENIX Security
Symposium, pages 1221–1238, 2019. 3, 11

[49] Marco Vassena, Craig Disselkoen, Klaus v. Gleissenthall, Sunjay Cauligi,
Rami Gökhan Kıcı, Ranjit Jhala, Dean Tullsen, and Deian Stefan.
Automatically eliminating speculative leaks from cryptographic code
with Blade. In POPL, January 2021. 3, 13

[50] Alexios Voulimeneas, Jonas Vinck, Ruben Mechelinck, and Stijn
Volckaert. You shall not (by)pass! practical, secure, and fast PKU-based
sandboxing. In EuroSys, 2022. 3, 11

[51] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher W.
Fletcher, Roy H. Campbell, and Josep Torrellas. Attack directories,
not caches: Side channel attacks in a non-inclusive world. In IEEE SP,
pages 888–904, 2019. 2

[52] Mengjia Yan, Christopher W. Fletcher, and Josep Torrellas. Cache
telepathy: Leveraging shared resource attacks to learn DNN architectures.
In USENIX Security Symposium, pages 2003–2020, 2020. 2

[53] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A high resolution,
low noise, L3 cache side-channel attack. In USENIX Security, pages
719–732, 2014. 2, 3, 4, 11

[54] Steve Zdancewic and Andrew C. Myers. Robust declassification. In
CSFW, pages 15–23, 2001. 6, 12

APPENDIX A
ADDITIONAL PROOFS

Lemma 4 (Unwinding lemma for sequential execution). Let
d “ step, force. If $ c, then for every pair of execution steps:

xc, ρ1, µ1,Ky
o1
Ýá
d
xc11, ρ

1
1, µ

1
1, b

1
1y

xc, ρ2, µ2,Ky
o2
Ýá
d
xc12, ρ

1
2, µ

1
2, b

1
2y

we have:

pρ1, µ1q „ pρ2, µ2q ^ o1 “ o2

ùñ pρ11, µ
1
1q „ pρ

1
2, µ

1
2q ^ c

1
1“c

1
2 ^ b

1
1“b

1
2.

Proof. We prove that pρ11, µ
1
1q „ pρ12, µ

1
2q and c11 “ c12 and

b11 “ b12 by case analysis on the structure of c. The second and
third item are immediate to establish so we focus on the first.

‚ skip and fence are trivial as the memory and register maps
are left unchanged.

‚ x :“ e and Γpxq “ H . By assumption, pρ1, µ1q „

pρ2, µ2q. As Γpxq “ H , we have ρ1 „ ρ11 and ρ2 „ ρ12,
where ρ1i “ ρirx :“ JeKρis. Hence by transitivity
pρ11, µ1q „ pρ

1
2, µ2q.

‚ x :“ e and Γpxq “ L. By assumption, pρ1, µ1q „ pρ2, µ2q.
The typing rule guarantees that Γpeq ď Γpxq and hence
Γpeq “ L. It follows that JeKρ1 “ JeKρ2 and hence that
ρ11 „ ρ12, where ρ1i “ ρirx :“ JeKρis. Hence by transitivity
pρ11, µ1q „ pρ

1
2, µ2q.

‚ x :“ ares. By assumption, pρ1, µ1q „ pρ2, µ2q. The
typing rule guarantees that Γpeq “ L and Γpaq ď Γpxq.
Since pρ1, µ1q „ pρ2, µ2q, it follows that JeKρ1 “ JeKρ2 .
Moreover ρ11 „ ρ12, where ρ1i “ ρirx :“ µirpa, JeKρiqss.
Hence by transitivity pρ11, µ1q „ pρ

1
2, µ2q.

‚ ares :“ e1 and Γpaq “ H . By assumption, pρ1, µ1q „

pρ2, µ2q. The typing rule guarantees that Γpeq “ L,
hence JeKρ1 “ JeKρ2 . Moreover µ11 „ µ12, where µ1i “
µirpa, JeKρiq :“ Je1Kρis. Hence by transitivity pρ1, µ11q „
pρ2, µ

1
2q;

‚ ares :“ e1 and Γpaq “ L. By assumption, pρ1, µ1q „

pρ2, µ2q. The typing rule guarantees that Γpeq “ L
and Γpxq “ L, hence JeKρ1 “ JeKρ2 . Moreover
Je1Kρ1 “ Je1Kρ2 and hence µ11 „ µ12, where µ1i “
µirpa, JeKρiq :“ Je1Kρis. Hence by transitivity pρ1, µ11q „
pρ2, µ

1
2q.

‚ x :“declassify e. By assumption, pρ1, µ1q „ pρ2, µ2q. The
first execution leaks JeKρ1 and the second execution leaks
JeKρ2 . Again by assumption, the two observations o1 and
o2 are equal, hence JeKρ1 “ JeKρ2 . Therefore ρ11 „ ρ12,
where ρ1i “ ρirx :“ JeKρis. By transitivity pρ11, µ1q „

pρ12, µ2q.

‚ if t then c1 else c2 and d “ step. By assumption,
pρ1, µ1q „ pρ2, µ2q. The first execution leaks JtKρ1 and
the second execution leaks JtKρ2 . Again by assumption, the
two observations o1 and o2 are equal, hence JtKρ1 “ JtKρ2 ,
and so both executions take the same branch (correspond-
ing to JtKρi). The memory and register maps are left
unchanged.

‚ if t then c1 else c2 and d “ force. By assumption,
pρ1, µ1q „ pρ2, µ2q. The first execution leaks JtKρ1 and
the second execution leaks JtKρ2 . Again by assumption, the
two observations o1 and o2 are equal, hence JtKρ1 “ JtKρ2 ,
and so both executions take the same branch (correspond-
ing to JtKρi). The memory and register maps are left
unchanged.

‚ while t do c1 proceeds similar to if.

‚ c1; c2. The result follows from induction on c1 and c2.

Lemma 5 (Unwinding lemma for idealized speculative execu-
tion). If $ c then for every pair of execution steps:

xc, ρ1, µ1,Jy
o1
Ýá
d
xc11, ρ

1
1, µ

1
1,Jy

xc, ρ2, µ2,Jy
o2
Ýá
d
xc12, ρ

1
2, µ

1
2,Jy

we have:

ρ1„ρ2 ùñ o1“o2 ^ ρ
1
1„ρ

1
2 ^ c

1
1“c

1
2

Proof. By case analysis on the structure of c.

‚ skip is trivial.

‚ fence does not apply, since the rule requires b “ K.

‚ x :“ e and Γpxq “ H . By assumption, ρ1 „ ρ2. As
Γpxq “ H , we have ρ1 „ ρ11 and ρ2 „ ρ12, where ρ1i “
ρirx :“ JeKρis. Hence by transitivity ρ11 „ ρ12.

‚ x :“ e and Γpxq “ L. By assumption, ρ1 „ ρ2. The
typing rule guarantees that Γpeq ď Γpxq and hence Γpeq “
L. It follows that JeKρ1 “ JeKρ2 and hence that ρ11 „ ρ12,
where ρ1i “ ρirx :“ JeKρis.

‚ x :“ ares, Γpxq “ L, and JeKρ P r0, |a|q. By assumption,
ρ1 „ ρ2. The typing rule guarantees that Γpeq “ L, hence
JeKρ1 “ JeKρ2 and the observations o1 and o2 coincide.

15

The typing rule also guarantees that Γpaq “ L. Hence
ρ11 „ ρ12, where ρ1i “ ρirx :“ µirpa, JeKρiqss.

‚ x :“ ares, Γpxq “ H , and JeKρ P r0, |a|q. By assumption,
ρ1 „ ρ2. The typing rule guarantees that Γpeq “ L, hence
JeKρ1 “ JeKρ2 and the observations o1 and o2 coincide.
We also have ρ1 „ ρ11 and ρ2 „ ρ12, hence by transitivity
ρ11 „ ρ12 where ρ1i “ rx :“ µirpa, JeKρiqss.

‚ x :“ ares, Γpxq “ H , and JeKρ R r0, |a|q. By assumption,
ρ1 „ ρ2. The typing rule guarantees that Γpeq “ L, hence
JeKρ1 “ JeKρ2 and the observations o1 and o2 coincide. We
also have ρ1 „ ρ11 and ρ2 „ ρ12 where ρ1i “ rx :“ vis and
vi is chosen adversarially; hence by transitivity ρ11 „ ρ12.

‚ x :“ ares, Γpxq “ L, and JeKρ R r0, |a|q. By assumption,
ρ1 „ ρ2. The typing rule guarantees that Γpeq “ L,
hence JeKρ1 “ JeKρ2 and the observations o1 and o2
coincide. Moreover in the idealized semantics, we have
ρ1i “ ρirx :“ 0s; thus ρ11 „ ρ12.

‚ ares :“ e1. By assumption, ρ1 „ ρ2. The typing rule
guarantees that Γpeq “ L, hence JeKρ1 “ JeKρ2 and the
observations o1 and o2 coincide. The register map is left
unchanged.

‚ x :“declassify e. By assumption, ρ1 „ ρ2. In the idealized
semantics, both executions leak decl 0 and hence the two
observations o1 and o2 are equal. Moreover ρ1i “ ρirx :“
0s; thus ρ11 „ ρ12.

‚ if t then c1 else c2 and d “ step. By assumption,
pρ1, µ1q „ pρ2, µ2q. The typing rule guarantees that
Γptq “ L, hence JtKρ1 “ JtKρ2 and the observations
o1 and o2 coincide. Both executions take the same
branch, corresponding to JtKρi . The register maps are
left unchanged.

‚ if t then c1 else c2 and d “ force. By assumption,
pρ1, µ1q „ pρ2, µ2q. The typing rule guarantees that
Γptq “ L, hence JtKρ1 “ JtKρ2 and the observations
o1 and o2 coincide. Both executions take the same
branch, corresponding to JtKρi . The register maps are
left unchanged.

‚ while t do c1 proceeds similar to if.

‚ c1; c2. The result follows from induction on c1 and c2.

The correctness of the transformation as stated in Lemma 6
is imprecise, because the transformed program performs
“administrative” steps to update the speculation flag. The
correctness is stated precisely using an erasure function | ¨ |
that takes as input a list of directives and a list of observations
of the same length, and filters out all entries that contain a ‚
observation. Formally, | ¨ | is defined inductively by the clauses:

|pε, εq| “ pε, εq
|pd :: D, ‚ :: Oq| “ |pD,Oq|
|pd :: D, o :: Oq| “ let pD1,O1q “ |pD,Oq|

in pd :: D1, o :: O1q if o ‰ ‚

Lemma 7 (Implementation of idealized semantics). If

xc, ρ, µ, by ÛO
D xc

1, ρ1, µ1, b1y

then there exists D1 such that

xLcM, ρrb̃ :“ bs, µ, by óO
1

D1 xc
1, ρ1rb̃ :“ b1s, µ1, b1y

and |pD,Oq| “ |pD1, O1q|. Conversely, if

xLcM, ρrb̃ :“ bs, µ, by óO
1

D1 xLc
1M, ρ1rb̃ :“ b1s, µ1, b1y

then there exists D such that

xc, ρ, µ, by ÛO
D xc

1, ρ1, µ1, b1y

and |pD,Oq| “ |pD1, O1q|.

Both implications are proved by induction on the length of
the execution. The base case is proved by inspection on the
semantics.

Definition 2 presents 2-trace RNI. We show that this is a
stronger property than the typical 4-trace hyperproperty for
speculative security.

Definition 3 (4-trace RNI). A program c is 4-trace RNI
iff for every pair of executions xc, ρ1, µ1,Ky ó

O1

D and
xc, ρ2, µ2,Ky ó

O2

D we have:

O11 “ O12 ùñ O1 “ O2

where xc, ρ1, µ1y ó
O11 (resp. O12) is a complete sequential

execution.

Lemma 8. If a program c satisfies 2-trace RNI, then it also
satisfies 4-trace RNI.

Proof. Suppose c satisfies 2-trace RNI. Let xc, ρ1, µ1,Ky ó
O1

D

and xc, ρ2, µ2,Ky ó
O2

D be two executions of c such that
xc, ρ1, µ1y ó

O11 and xc, ρ2, µ2y ó
O12 and O11 “ O12. Since O11

(resp. O12) is the sequential trace of c, any sequential prefix of
D will produce a prefix of O11 (resp. O12) when executed from
the same initial state. Thus for any sequential prefix D˚ and
xc, ρ1, µ1,Ky ó

O˚1
D˚ and xc, ρ2, µ2,Ky ó

O˚2
D˚ we have O˚1 “ O˚2 .

Fix D˚ as the longest sequential prefix of D. By assumption,
c satisfies 2-trace RNI, so O˚1 “ O˚2 ùñ O1 “ O2.

APPENDIX B
AES KEY RECOVERY

A. Further Background on AES

As described in Section VII-A, AES represents the state as a
4ˆ4 matrix of bytes. Each of these bytes represents an element
in GFp28q, with the reducing polynomial x8`x4`x3`x`1.
A byte with a value b “

ř7
i“0 bi2

i represents the polynomial
ř7
i“0 bix

i. Thus, for example, a byte value of 3 represents the
polynomial x` 1.

The MixColumns operation computes the product of the
state and the fixed matrix

»

—

—

–

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

fi

ffi

ffi

fl

.

16

Thus, each output column is a linear transformation of the
input column. We note that MixColumns is the only AES
operation to provide diffusion between state bytes.

B. Key Recovery of Reduced-Round AES

In this section we describe how we recover keys from
messages disclosed by the attack described in Section VII.

A two-round AES consists of one internal round and one final
round. Recall that an internal round consists of the operations
SubBytes, ShiftRows, MixColumns, and AddRoundKey,
whereas the final round only consists of SubBytes, Shift-
Rows, and AddRoundKey. Hence, with the addition of the
key blinding step before the encryption, we have that for a
plaintext P , the reduced-round ciphertext is RRC “ k2 ‘
SRpSBpk1‘MC pSRpSBpk0‘P qqqqq, where ki is the round
key for round i.

We assume that the attacker knows P and recovers RRC
through the transient-execution attack. To recover the key,
we use a divide-and-conquer strategy. Specifically, we note
that the MixColumns operation, which is the only AES step
that mixes data between state bytes, only appears once in the
derivation of RRC . Consequently, diffusion across a two-round
AES is extremely limited, and each byte of the reduced-round
ciphertext depends on exactly four plaintext bytes. This is
depicted in Figure 8, where we see that plaintext bytes P0, P5,
P10, and P15 are the only plaintext bytes that affect RRC 0.

We can therefore split the keys to only those bytes that affect
a targeted ciphertext byte and recover them independently of
other key bits. For example, observing Figure 8, we see that
we need to determine the key bytes at the positions of the
shaded tiles for k0, i.e. k00 , k05 , k010, and k015. We further need to
recover the key bytes that affect RRC 0 in rounds 1 and 2, i.e.
k10 and k20 . A straightforward approach would be to brute force
these by first collecting a number of plaintexts and matching
reduced-round ciphertexts, and then rejecting a guess of key
bytes that does not match one or more of the pairs. However,
this requires guessing 48 bits for each quarter of the state, to
a total expected complexity of 250.

We can improve the attack complexity significantly by consid-
ering pairs of encryptions that agree on a byte. Assume we have
a pair of plaintexts P and P 1, such that for the corresponding
reduced-round ciphertexts we have RRC 0 “ RRC 10. For such
a pair, we can guess key bytes k00 , k05 , k010, and k015 and check
whether after the MixColumns step we get the same value
at state byte 0. We find that on average we need 6 pairs that
match on a byte in a column to recover the key bytes that
match the column. On average, we need to try 26 plaintexts
to find the required number of pairs. Finally, because we can
reuse the plaintexts to attack all columns, the total number of
plaintexts we need to encrypt is 31.

Brute forcing four key bytes requires at most 232 tries and
takes on the order of a few minutes on a typical laptop. Thus,
the total complexity of recovering k0 is 234 with 31 encryption
samples on average. For AES-128, k0 is identical to the master
key. For AES-192 and AES-256, we need to also recover k1.
Fortunately, having recovered k0, we can guess one byte each

of k1 and k2 and compare against the resulting byte of RRC .
Thus, with an additional complexity of 216 ¨ 16 “ 220 we
can recover the 16 bytes of k1. On average, we need to try 3
plaintexts to recover each byte of k1. The plaintexts used to
attack k0 previously can be reused. So, there are no additional
samples needed to find k1.

C. Related-Cipher Attack

We also consider the attack scenario where the attacker can
extend the number of rounds AES performs. For example, in
the case of AES-128, this can occur when we use a standard
AES-192 key for the training. The use of an AES-192 key
trains the branch predictor that AES is performed with 12
rounds. In practice, however, we find implementations access
precomputed round keys and that such accesses are protected
by SLH after misprediction. Nevertheless, we still present
the cryptanalysis of recovering the AES-128 key from a
hypothetical implementation that computes round keys on-
the-fly.

Let S denote the cipher state after performing nine rounds.
For simplicity, we also use S1 “ SRpSBpSqq. In the normal
execution of AES, the cipher now performs a final round to
calculate the ciphertext. Hence, the ciphertext is C “ k10‘S1.
Thus, if we can determine S1, we can find the round key k10.

Next, we note that when the cipher continues for two
additional rounds before the final round executes we get
C 1 “ k12 ‘ SRpSBpk11 ‘MC pSRpSBpk10 ‘MC pS1qqqqqq.
For the key recovery, we assume that memory is scrubbed
before it is used for key material. Consequently, in AES-128
the keys for rounds 11 and 12 are not initialized and remain 0.
We can, therefore, compute

Ĉ“SB´1
pSR´1

pMC´1
pk11 ‘ SB´1

pSR´1
pk12 ‘ C 1qqqqq

“k10 ‘MC pS1q

We now have C ‘ Ĉ “ pk10 ‘ S1q ‘ pk10 ‘MC pS1qq “
S1 ‘MC pS1q. Recall that for a state S1, we have

MC pS1q “

»

—

—

–

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

fi

ffi

ffi

fl

¨ S1.

Thus,

C ‘ Ĉ“S1 ‘MC pS1q

“S1 ‘

»

—

—

–

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

fi

ffi

ffi

fl

¨ S1 “

»

—

—

–

3 3 1 1
1 3 3 1
1 1 3 3
3 1 1 3

fi

ffi

ffi

fl

¨ S1

Unfortunately, the matrix
»

—

—

–

3 3 1 1
1 3 3 1
1 1 3 3
3 1 1 3

fi

ffi

ffi

fl

17

SR ˝ SB ˝ARKpk0q

plaintext

ARKpk1q ˝MC ARKpk2q ˝ SR ˝ SB

output

Figure 8: The blue tiles represents bytes that are affected by fixing k00, k
0
5, k

0
10, k

0
15 of the first round key, k10 of the second

round key, and k20 of the third round key. The operations AddRoundKey, SubBytes, ShiftRows, MixColumns are shortened
to ARK,SB, SR,MC respectively.

is singular. Hence, we cannot invert it to find S1 from C ‘ Ĉ.
However, we find that for each of the columns of S1 there are
exactly 28 values that can satisfy the equation. Specifically, for
each column we can select a value for one of the bytes and
use the linear relationship between S1 and C ‘ Ĉ to determine
the other values of the column. For each combination of values
for the four columns of S1 we get a guess of k10. We can now
reverse the key expansion to get a guess of the key, and test
whether the guess is correct. Overall, we need to test 232 such
combinations, recovering the key in less than 10 minutes on a
typical laptop.

18

	Introduction
	Background
	Microarchitectural channels
	Spectre attacks

	Threat model
	Semantics and typing
	Language syntax
	Speculative semantics
	Typing environment and speculation

	Relative non-interference
	Relative non-interference
	Idealized semantics
	Program transformation

	Implementation and evaluation
	FaCT implementation
	Performance evaluation
	Performance of selSLH

	Case study: AES
	AES Background
	PoC Attack Overview
	PoC Attack on AES
	PoC Attack on OpenSSL AES
	Attack Practicality

	Related Work
	Conclusion
	Appendix A: Additional Proofs
	Appendix B: AES Key Recovery
	Further Background on AES
	Key Recovery of Reduced-Round AES
	Related-Cipher Attack

