
Verification Condition Generator for Qhasm

Ming-Hsien Tsai

February 17, 2014

1 Grammar

annotations ::= annotation annotations | annotation
annotation ::= var auxvars | predicate predicates | inv bexp |

assume bexp | assert bexp | cut bexp
auxvars ::= auxvar auxvars | auxvar
auxvar ::= VAR = exp | VAR @ NUM | VAR (formals) = exp

predicates ::= predicate predicates | predicate
predicate ::= VAR (formals) = bexp
formals ::= fparams | ε
fparams ::= fparam , fparams | fparam
fparam ::= VAR @u NUM | VAR @ NUM

bexp ::= true | exp2 = exp2 | exp2 != exp2 |
exp2 lessop atomics | exp2 lessop atomics lessop exp2 |
exp2 moreop atomics | exp2 moreop atomics moreop exp2 |
bexp -> bexp | bexp || bexp | bexp && bexp | ~ bexp |
(bexp) | (exp = exp) $ NUM | VAR (actuals)

atomics ::= atomic | atomic , atomics
exp ::= bexp ? exp2 : exp2 | exp2

exp2 ::= atomic | exp2 + exp2 | exp2 - exp2 | exp2 * exp2 |
exp2 & exp2 | exp2 | exp2 | exp2 ^ exp2 |
exp2 % exp2 | exp2 %u exp2 |
exp2 << exp2 | exp2 >> exp2 | exp2 >>u exp2
exp2 ** exp2 | - exp2 | ~ exp2

atomic ::= NUM | carry | var | atomic . atomic |
atomic @ NUM | atomic @u NUM | atomic @l | atomic @h |
atomic [NUM , NUM] | VAR (actuals) | (exp)

actuals ::= aparams | ε
aparams ::= exp , aparams | exp

var ::= VAR | mem64 [qvar + NUM] | mem64 [VAR] | qvar [NUM]

qvar ::= VAR
lessop ::= < | <= | <u | <=u

moreop ::= > | >= | >u | >=u

1

2 Annotations

There are six kinds of annotations, namely var, predicate, inv, assume,
assert, and cut. The symbol ε below denotes an empty string.

annotations ::= annotation annotations | annotation
annotation ::= var auxvars | predicate predicates | inv bexp |

assume bexp | assert bexp | cut bexp
auxvars ::= auxvar auxvars | auxvar
auxvar ::= VAR = exp | VAR @ NUM | VAR (formals) = exp

predicates ::= predicate predicates | predicate
predicate ::= VAR (formals) = bexp
formals ::= fparams | ε
fparams ::= fparam , fparams | fparam
fparam ::= VAR @u NUM | VAR @ NUM

2.1 Var

Define logical variables or functions. Neither the name of a logical variable nor
the name of a logical function can appear in the Qhasm code. The value of a
logical variable is evaluated when the variable is defined. The scope of a logical
variable does not cross a cut. If the initial value of a logical variable is not given,
the bit-width of the variable should be specified as an extension. If the initial
value of a logical variable is given, the bit-width should be able to be deduced
from the initial value. The expression of a logical function is evaluated when
the function is invoked. A logical function can still be invoked after a cut. The
bit-widths of function parameters should be specified explicitly.

2.1.1 Examples

var a = x@u128 * y@u128

b = x.y

c@u128

f(d@u128) = d + x.y

The bit-widths of a, b, and c are respectively 128, 256, 128.

2.2 Predicate

Define predicates. Similar to logical functions, predicates can still be used after
cuts.

2.2.1 Examples

predicate p(x@u64) = 0 <=u x[0], x[8] <u 2**51

2

2.3 Inv

Specify invariants, which are mainly used as the assumption of input variables
that never change. A defined invariant will be replaced by an assumption and
will be inserted to every cut in the following annotations. For example,

inv 0 <=u x <=u 2**52

...

cut e1

...

cut e2

...

assert e3

is equivalent to

assume 0 <=u x <=u 2**52

...

cut e1 && 0 <=u x <=u 2**52

...

cut e2 && 0 <=u x <=u 2**52

...

assert e3

.

2.4 Assume

Assume that a Boolean expression holds. This can be used to add assumptions
about the input variables.

2.4.1 Examples

assume 0 <=u x <=u 2**52 && 0 <=u y <=u 2**52

2.5 Assert

Verify if an assertion holds.

2.5.1 Examples

assert (x@u512 - y@u512) % (2**255 - 19) = 0

2.6 Cut

Verify if an assertion holds and make the assertion the assumption of the follow-
ing Qhasm code. Qhasm code before a cut will not be considered in the Qhasm
code after the cut. Thus, the cut can be viewed as an abstraction of the Qhasm
code before the cut.

3

2.6.1 Examples

cut (x@u512 = y@u512) % (2**255 - 19) = 0

3 Boolean Expressions

bexp ::= true | exp2 = exp2 | exp2 != exp2 |
exp2 lessop atomics | exp2 lessop atomics lessop exp2 |
exp2 moreop atomics | exp2 moreop atomics moreop exp2 |
bexp -> bexp | bexp || bexp | bexp && bexp | ~ bexp |
(bexp) | (exp = exp) $ NUM | VAR (actuals)

actuals ::= aparams | ε
aparams ::= exp , aparams | exp

lessop ::= < | <= | <u | <=u
moreop ::= > | >= | >u | >=u

Boolean expressions contain true, equality (=), inequality (!=), number com-
parison (<, <=, <u, <=u, >, >=, >u, >=u), implication (->), disjunction (||), con-
junction (&&), negation (~), and instantiated predicates. The Boolean expression
e1 <= v1, v2 <= e2 is a shorthand of e1 <= v1 <= e2 && e1 <= v2 <= e2.
The Boolean expression (e1 = e2)$n is a comparison of n smaller chunks of
e1 and e2. For example, given that both e1 and e2 have a bit-width 64,
(e1 = e2)$2 is equivalent to the following expression.

e1[31,0] = e2[31,0] && e1[63,32] = e2[63,32]

4 Expressions

exp ::= bexp ? exp2 : exp2 | exp2
exp2 ::= atomic | exp2 + exp2 | exp2 - exp2 | exp2 * exp2 |

exp2 & exp2 | exp2 | exp2 | exp2 ^ exp2 |
exp2 % exp2 | exp2 %u exp2 |
exp2 << exp2 | exp2 >> exp2 | exp2 >>u exp2
exp2 ** exp2 | - exp2 | ~ exp2

atomic ::= NUM | carry | var | atomic . atomic |
atomic @ NUM | atomic @u NUM | atomic @l | atomic @h |
atomic [NUM , NUM] | VAR (actuals) | (exp)

actuals ::= aparams | ε
aparams ::= exp , aparams | exp

var ::= VAR | mem64 [qvar + NUM] | mem64 [VAR] | qvar [NUM]

qvar ::= VAR

Expressions contain addition (+), subtraction (-), multiplication (*), bit-
wise and (&), bit-wise or (|), bit-wise xor (^), signed mod (%), unsigned mod

4

(%), left-shifting (<<), arithmetic right-shifting (>>), logical right-shifting (>>u),
two’s complement (-), one’s complement (~), extension (@, @u), concatenation
(.), extraction ([,], @h, @l), exponentiation (**), and function invocation.
There are two kinds of extensions.

• e@n extends e to n bits arithmetically.

• e@un extends e to n bits logically.

There are three kinds of extractions.

• e[n,m] with n ≥ m extracts the bits between position n (included) and
position m (included). The position starts from 0.

• e@h extract the higher bits of e.

• e@l extract the lower bits of e.

Memory access is written as mem64[v + n] or v[n], where v is the base and n

is the offset (multiple of 8). A variable is a qvar if it is a program variable in
the Qhasm code.

5

